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Abstract

Artificial intelligence (AI) -assisted workflows have transformed materials discovery, en-
abling rapid exploration of chemical spaces of various material systems. Two-dimensional
(2D) hybrid perovskites represent an exciting frontier, and their extraordinary optoelec-
tronic properties can be largely attributed to the versatile choices of organic spacers. How-
ever, current efforts to design 2D perovskites rely heavily on trial-and-error and expert
intuition approaches, leaving the majority of chemical space unexplored.

This thesis introduces an inverse design workflow specifically designed for Dion-Jacobson
perovskites, pivoting on an invertible fingerprint representation for millions of conjugated
diammonium organic spacers. A molecular morphing approach was employed to expand
the chemical space of organic spacers, which were then evaluated using high-throughput
density functional theory (DFT) calculations to determine the energy levels of both the
organic and inorganic components in hypothetical perovskite structures. These datasets
formed the basis for training various machine learning models, which not only accelerated
energy level predictions but also revealed the underlying physical insights between molec-
ular fingerprints and energy levels. Furthermore, a synthesis feasibility screening funnel
was developed based on the synthetic accessibility of organic molecules and the formability
of 2D structures. Using the above workflow, we inverse-designed new organic spacer can-
didates with deterministic band alignment between the organic and the inorganic motifs
in the 2D hybrid perovskites.

These results highlight the power of integrating invertible, physically meaningful repre-
sentations into AI-assisted design. By streamlining the property-driven design of synthe-
sizable materials, this framework provides a scalable and efficient pathway for navigating
the chemical space of 2D hybrid perovskites. Beyond its immediate applications to per-
ovskites, the methodology demonstrated herein offers a broadly applicable paradigm for
the AI-assisted discovery and design of advanced materials, paving the way for future
innovations in materials science and technology.
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Chapter 1

Introduction

1.1 Background

Recent advances in artificial intelligence (AI) have revolutionized materials discovery, en-

abling researchers to explore vast chemical and structural spaces with unprecedented ef-

ficiency. Traditional experimental and computational methods for materials design are

often time-consuming and resource-intensive, making AI-driven approaches particularly

attractive. By leveraging machine learning (ML) techniques, researchers can predict ma-

terial properties, optimize design parameters, and identify promising candidates for various

applications[1]. Among these AI-driven strategies, inverse design has emerged as a trans-

formative approach that reverses the conventional forward design process, allowing the

direct discovery of materials with targeted properties[2]. This approach employs genera-

tive models, optimization algorithms, and invertible material representations to streamline

the discovery process across diverse material domains, including inorganic crystals, high-

entropy alloys, organic semiconductors, and metal-organic frameworks[3]–[5].

Two-dimensional (2D) hybrid perovskites represent an exciting frontier for AI-assisted

inverse design due to their structural tunability and unique optoelectronic properties.

Compared to their three-dimensional (3D) counterparts, 2D perovskites offer a signifi-

1



CHAPTER 1. INTRODUCTION

cantly larger design space owing to the incorporation of organic cation spacers. Among

the various 2D perovskite phases, the Dion-Jacobson (DJ) phase has attracted significant

attention for its distinctive structural features, including the presence of diammonium

organic spacers and the absence of van der Waals gaps. These properties contribute to

enhanced charge transport and stability, making DJ-phase perovskites particularly promis-

ing for optoelectronic applications such as photovoltaics and light-emitting diodes (LEDs).

However, the rational design of organic spacers in DJ-phase perovskites remains a major

challenge due to the vast chemical space and the complex interplay between molecular

structure and electronic properties[6].

Despite recent progress in AI-assisted workflows for hybrid perovskites, most studies have

focused on forward design approaches that rely on exhaustive searches within predefined

chemical spaces[7], [8]. These methods often prioritize formability and stability while

overlooking critical properties such as energy level alignment, which directly influences

charge transport and device performance. Given the quantum-well-like structure of 2D

perovskites, where organic and inorganic layers possess distinct electronic properties, un-

derstanding and optimizing energy level alignment is crucial for advancing these materials

in optoelectronic applications[9]. Addressing this challenge requires a systematic and AI-

driven inverse design methodology tailored to hybrid perovskites.

1.2 Research Objectives

The primary objective of this research is to develop an AI-assisted inverse design framework

for discovering new organic spacers in DJ-phase hybrid perovskites, with a particular focus

on optimizing energy level alignment. The specific goals of this study are:

• To explore AI-driven approaches for materials discovery and evaluate their applica-

bility to 2D hybrid perovskites.

• To investigate inverse design methodologies for identifying organic spacers in 2D

perovskites with tailored electronic properties.

2



1.3. THESIS STRUCTURE

• To examine the impact of organic spacers on the electronic structure and synthesize

feasibility of DJ-phase hybrid perovskites.

• To inverse design new organic spacer candidates to achieve the targeted energy level

alignment of DJ perovskites

This research aims to bridge the gap between AI-assisted design and hybrid perovskite

discovery, providing a systematic approach for accelerating materials innovation through

inverse design principles.

1.3 Thesis Structure

This thesis is structured into six chapters as follows:

Chapter 1 (Introduction) sets the context for AI-assisted materials discovery, emphasizing

the importance of inverse design within hybrid perovskites. It also states the central

research objectives and outlines the scope of this work.

Chapter 2 (Literature Review) surveys recent advances in AI-driven materials research

and explores various inverse design methodologies. It then examines the structural funda-

mentals of 2D perovskites—particularly Dion–Jacobson (DJ) perovskites—and highlights

why they provide a compelling platform for investigating organic spacer design. Finally, it

reviews current AI techniques used for 2D perovskite discovery and underscores the value

of pursuing inverse design strategies in this domain.

Chapter 3 (Methodology) presents the overall inverse design framework. It details the

development of invertible molecular fingerprints, molecular morphing, high-throughput

calculations, machine learning models for energy level prediction, and synthesis feasibility

screening.

Chapter 4 (High-Throughput Calculation and Machine Learning Predictions) details the

expansion of the chemical space through molecular morphing, visualization of generated
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CHAPTER 1. INTRODUCTION

structures, ML model selection and evaluation, and interpretation of structure-property

relationships.

Chapter 5 (Synthesis Feasibility Screening and Final Candidate Validation) explains the

screening protocol for synthetic accessibility and examines the structural formability of 2D

layers. It also focuses on identifying the fingerprint features that correlate with specific

energy alignment types and concludes with DFT-based validation of the most promising

DJ-phase perovskite candidates.

Chapter 6 (Summary and Outlook) summarizes the key findings of the research and pro-

vides an outlook on future directions for AI-assisted hybrid perovskite design.
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Chapter 2

Literature Review

This chapter reviews recent advancements and current challenges in two key areas rel-

evant to this work: AI-assisted materials discovery (Section 2.1) and the design of 2D

perovskites (Section 2.2). Particular emphasis is placed on inverse design methodologies

within AI-driven approaches and their applicability to the discovery and optimization of

2D perovskite materials. Section 2.3 concludes the chapter by summarizing the literature

and identifying key research gaps that motivate the development of the inverse design

framework presented in this thesis.

2.1 Introduction to AI in Materials Science

As introduced in Chapter 1, AI has become a transformative tool in materials discovery,

often referred to as the “fourth paradigm” of science—complementing experimental, the-

oretical, and computational approaches (Figure 2.1). This section provides an overview

of various AI and machine learning (ML) techniques applied in materials science, with a

particular focus on their role in accelerating the discovery of novel materials.

The applications of AI in materials science are diverse and rapidly expanding. AI serves

as an overarching framework encompassing various concepts, with machine learning (ML)

5
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Figure 2.1: The four paradigms of scientific discovery[10].

as a key subset specifically applied to materials science. At its core, ML is utilized to

identify complex relationships that are either too intricate or computationally expensive

for traditional analytical methods[11]. Key applications include:

1. Learning structure-property relationships: ML models can predict material proper-

ties directly from structural information[12]–[14]. For example, deep learning mod-

els have been employed to learn the relationship between the structure of organic

molecules encoded in fingerprints and their emission characteristics in light-emitting

diodes[15]. For inorganic materials, deep learning model has been used to model

the relationship between the composition of high-entropy alloys and their thermal

expansion coefficients[16].

2. Optimizing synthesis parameters: AI can elucidate reaction mechanisms and opti-

mize experimental conditions for complex chemical reactions[17]–[20]. Supervised

ML models have been trained to correlate synthesis parameters with reaction out-

comes, enabling the efficient design of experiments and reducing the trial-and-error

typically associated with materials synthesis[21].

3. Accelerating computational methods: AI models can reduce the computational cost
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2.1.1 Types of ML methods used for materials discovery

of traditional simulation techniques. For instance, active learning models have been

developed to perform quantum mechanical calculations using small to medium-sized

molecular building blocks instead of individual atoms, as in first-principles meth-

ods. These models have demonstrated faster and reliable predictions across diverse

material systems and target properties[22].

Given the broad range of AI applications in materials science, this literature review chap-

ter focuses specifically on machine learning for materials discovery. This domain often

encompasses one or more of the scenarios discussed above, with the primary goal of iden-

tifying novel or previously unexplored materials that exhibit superior properties compared

to existing ones. In the following sections, we provide a systematic framework to clarify the

various ML methods employed in materials discovery, addressing the diverse terminologies

commonly found in the literature. Additionally, we will discuss how these ML methods

can be integrated into a comprehensive machine learning workflow and how they can be

effectively combined with other data-driven approaches to enhance materials research.

2.1.1 Types of ML methods used for materials discovery

An overview of commonly used ML methods is summarized in Figure 2.2. Within ML,

approaches that rely on manually engineered features and relatively simple model archi-

tectures are referred to as classical ML methods, with supervised learning being one of

the earliest and mostly widely used techniques. The first notable application of super-

vised learning in materials science dates back to 2010, where a probabilistic model is built

to identify the most probable crystal structures of unseen ternary oxide compounds[23].

Classical ML methods remain widely used, particularly when dealing with smaller datasets

(typically below thousands of data points) or when model interpretability is a key priority.

Meanwhile, deep learning represents a specialized branch of ML that employs multi-layered

neural networks capable of automatically extracting features from raw data. Unlike clas-

sical ML methods, deep learning does not require manual feature engineering, as it can

learn hierarchical representations directly from input data. Deep learning methods have

7
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ML methods for materials discovery

1. Classical Machine Learning

1a. Supervised Learning

Regression 

- e.g., linear regression, SVM

- predict quantitative materials properties 

(e.g., bandgap, hardness, thermal conductivity)

Classification 

- e.g., decision tree, random forests

- predict categorical outcomes 

(e.g., crystal structure type, phase stability)

1b. Unsupervised Learning

- e.g., PCA, t-SNE 

- clustering, Dimension Reduction

- materials categorization, discovery new phases

Reinforcement Learning

- optimize sequential decision-making tasks

- reaction pathways optimization

2. Deep Learning

2b. Convolutional Neural Networks (CNN)

- designed to process image data

- microscopy & diffraction image analysis

2a. Feedforward Neural Networks (FNN)

- most basic deep learning architecture

- predict material properties from descriptors

2c. Graph Neural Networks (GNN)

- molecules/Crystal structures as graphs 

(nodes = atoms, edges = bonds)

Baysian Optimization

- probablistic model guiding next experiment

- minimize the number of trials

2d. Generative Models

- e.g., GANs, VAEs

- propose new compounds or structures

Natural Language Processing

- text mining & literature analysis

- automatic extraction of data from articles

Active learning

- model-driven selection of informative experiments

- maximizing information gain

Figure 2.2: Common types of ML methods typically used in materials science.

become increasingly popular in materials science due to their superior performance in

tasks involving large and high-dimensional datasets. However, DL methods typically re-

quire larger datasets (often exceeding ∼ 10, 000 data points), significant computational

resources, and can be less interpretable compared to classical ML approaches.

Classical Machine Learning

The most distinctive types of classical ML methods are supervised and unsupervised learn-

ing. In supervised learning, models are trained on labelled datasets, where each data point

is associated with a known outcome, such as a material property (for regression tasks) or

a class label (for classification tasks).
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• Regression models, such as linear regression, random forests, Gaussian process re-

gression, and support vector regression (SVR), are used to map input descriptors

(e.g., elemental fractions, lattice parameters) to quantitative material properties

such as bandgap, thermodynamic stability, and morphology[24]–[27]. For instance,

a random forest regression model has been employed to correlate the elemental com-

position of adsorption sites with the electrocatalytic adsorption energy of copper-

containing intermetallic crystals[28].

• Classification techniques such as logistic regression, support vector machines (SVMs),

decision trees are designed to predict discrete labels. These models are commonly

applied to tasks such as phase classification, crystal structure identification, and

synthesizability prediction[7], [12], [29]. For example, various classification models

have been used to distinguish between different oxidation states in metal-organic

frameworks (MOFs) based on local environmental features, including metal type,

coordination geometry, and chemical environment[12].

Supervised learning approaches excel when reliable labelled data is available, whether from

experimental measurements or computational simulations. They are typically more inter-

pretable and computationally efficient compared to many deep learning models, making

them attractive for iterative property prediction and materials design workflows.

In unsupervised learning, the objective is to uncover hidden patterns or groupings within

unlabelled data without predefined outcomes.

• Clustering algorithms like k-means clustering, hierarchical clustering, and Gaussian

mixture models are employed to group materials with similar feature profiles, poten-

tially revealing unexpected trends or novel material families[30], [31]. For example,

a study applied hierarchical agglomerative clustering to categorize ternary nitrides

into distinct chemical families based on their stability and metastability profiles[31].

• Dimensionality reduction techniques, including principal component analysis (PCA)

and t-distributed stochastic neighbour embedding (t-SNE), are used to project high-
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dimensional materials data into lower-dimensional spaces. This facilitates the visu-

alization of patterns, identification of outliers, and discovery of structure–property

relationships that might be obscured in higher dimensions[3], [18], [28].

By revealing latent structures in the data, unsupervised methods can provide valuable

insights into structure–property correlations and guide targeted experimental or compu-

tational investigations.

Deep Learning

Deep learning (DL) is a specialized branch of ML that employs multi-layered neural net-

works to automatically learn features from raw data. This approach significantly reduces

the need for manual feature engineering, provided that sufficient training data and com-

putational resources are available. DL models excel at capturing complex, non-linear

relationships in high-dimensional datasets, making them particularly valuable for a wide

range of materials science applications.

Feedforward neural networks (FNNs) represent the most basic form of deep learning ar-

chitecture. In these models, information flows in a single direction—from input to out-

put—through multiple layers of interconnected nodes (neurons). FNNs are effective for

both regression and classification tasks, particularly when datasets are large enough to

support the direct learning of representations from raw inputs, such as the chemical struc-

tures of organic molecules[20], [32]. In one of the earliest applications of deep learning

in materials science, a simple neural network architecture with two hidden layers—the

minimum number required to be classified as deep learning—was used to design organic

molecules for light-emitting diode (LED) applications[15]. While more advanced deep

learning architectures have since been developed, FNNs are often employed as baseline

models for benchmarking the performance of more complex networks.

Convolutional neural networks (CNNs) are designed to process grid-like data structures,

such as images, by applying convolutional filters that automatically detect spatial hierar-

chies and local patterns. In materials science, CNNs are widely used for analysing image-
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based datasets, including microscopy images (e.g., SEM, TEM) to identify microstructural

features or defect distributions and diffraction patterns for automated phase classification

and structural analysis[33]–[35]. For example, a CNN architecture with six convolutional

layers was developed to classify crystal phases from X-ray diffraction (XRD) patterns

automatically[34].

Graph neural networks (GNNs) are particularly well-suited for materials science because

they natively process graph-structured data, which naturally represents molecules and

crystal structures. In this framework, atoms are represented as nodes, and bonds or inter-

atomic interactions are represented as edges. GNNs have demonstrated remarkable suc-

cess in predicting a wide range of material properties, including crystal stability, electronic

properties, and surface chemistry[36]–[38]. A notable example is GNoMe, a state-of-the-

art AI model developed by Google DeepMind, which uses GNNs to predict and discover

new crystalline materials. GNoMe has achieved unprecedented scalability, significantly

improving the efficiency of materials discovery—reportedly accelerating the process by an

order of magnitude[39].

Generative models aim to create new data samples that resemble the distribution of ex-

isting data, making them highly effective for inverse materials design. Two widely used

generative models in materials science include Generative Adversarial Networks (GANs)

and Variational Autoencoders (VAEs). Generative models can propose novel materials

with desired properties, such as targeted band gaps, thermal conductivity, or mechanical

strength[3], [16], [40]. For instance, MatterGen, a generative AI model developed by Mi-

crosoft Research, represents a significant breakthrough in materials science[41]. It enables

the design of new inorganic materials with specific target properties, greatly accelerating

the exploration of vast compositional spaces.

Other Machine Learning Methods

Active learning is especially valuable when experimental or simulation data are scarce

or expensive to obtain. In this method, the model autonomously selects the most infor-

mative data points or experiments to label next, thereby optimizing the learning process
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with minimal resources. Active learning strategies are often integrated with Gaussian pro-

cess regression (GPR), due to its inherent uncertainty quantification, or neural networks

to target high-uncertainty regions in the materials design space. This approach rapidly

converges on optimal candidates while minimizing total experimental cost[16], [28], [34],

[39].

In contrast to methods that rely on static datasets, reinforcement learning (RL) focuses

on sequential decision-making, where an agent explores chemical or process pathways and

receives “rewards” for achieving specific outcomes (e.g., synthesizing a stable or high-

performing material). RL is particularly powerful in dynamic laboratory environments,

enabling autonomous experimentation through real-time tuning of synthesis parameters

and adaptive control of reactors. This exploration-exploitation framework allows RL to

discover novel materials and optimize processes beyond human intuition[34], [42]. Bayesian

optimization employs probabilistic models to iteratively recommend the next most promis-

ing experiments based on current knowledge and uncertainty. By leveraging acquisition

functions—such as expected improvement or upper confidence bound—these methods bal-

ance exploration and exploitation to efficiently identify parameter sets or compositions

with superior properties (e.g., optimized reaction yield or solar cell efficiency)[5], [38],

[43].

Natural language processing (NLP) facilitates large-scale text mining of scientific litera-

ture, patents, and databases to extract valuable information, including synthesis proto-

cols, property data, and structure-property relationships. Recent advances, particularly

transformer-based models, have enhanced the ability to capture complex semantic pat-

terns. When combined with knowledge graph construction, NLP can reveal hidden corre-

lations, accelerate hypothesis generation, and guide experimental design toward previously

unexplored materials spaces[34], [44]–[46].
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Figure 2.3: A ML-assisted materials discovery workflow in an early OLED study[15].

2.1.2 Incorporation into Materials Discovery Workflows

Building on the discussion of ML methods used in materials discovery, this section explores

how ML is seamlessly integrated into materials discovery pipelines. Since ML models

require large datasets to learn effectively, they are often combined with high-throughput

computational tools and experimental platforms to generate the necessary training data.

On the computational side, large-scale density functional theory (DFT) and molecular

dynamics (MD) simulations serve as key sources of labelled datasets for ML model train-

ing and fine-tuning. These simulations help establish structure–property relationships,

enabling models to make more accurate predictions. Meanwhile, on the experimental side,

automated synthesis and characterization platforms generate high-quality data that can

be continuously fed back into ML models. This iterative process forms a closed-loop sys-

tem where predictions guide experiments, and experimental outcomes, in turn, refine the

model, accelerating the materials discovery cycle.

One of the earliest examples of ML integration in materials discovery was demonstrated in

a 2016 study on organic light-emitting diode (OLED) materials[15]. In this work, a simple
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deep learning model with just two hidden layers was incorporated into a materials dis-

covery workflow that included materials generation, high-throughput calculations, virtual

screening, and experimental fabrication (Figure 2.3). This streamlined workflow identified

thousands of promising candidates, and subsequent experimental validation revealed sev-

eral materials with exceptionally high quantum efficiency, showcasing the predictive power

and practical utility of ML-enhanced discovery pipelines.

Figure 2.4: An active learning loop applied to high-entropy alloy discovery[16].

A more advanced example is the discovery of high-entropy alloys (HEAs) as shown in

Figure 2.4, where an active learning framework was developed, integrating ML with high-

throughput DFT calculations, thermodynamic modelling, and experimental synthesis[16].

At the core of this workflow, a generative model proposed new compositions, while a cus-

tom two-step regression model predicted their properties. Out of millions of potential

compositions, 17 new alloys were synthesized and characterized, leading to the identifica-

tion of two HEAs with targeted thermal expansion properties.

At the highest level of complexity, fully autonomous materials discovery systems are emerg-

ing, integrating multiple AI models into unified closed-loop frameworks. A notable exam-
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Figure 2.5: Automated materials discovery with the A-Lab platform[34].

ple is the A-Lab platform (Figure 2.5), which employs several ML models to accelerate dis-

covery[34]. First, an NLP model is trained on extensive databases of synthesis procedures

extracted from the literature. This is followed by a regression model that predicts optimal

synthesis temperatures based on precursor materials. When initial synthesis attempts are

unsuccessful, an active learning algorithm iteratively refines the synthesis parameters us-

ing experimental feedback. Finally, convolutional neural networks (CNNs) are employed

to analyse X-ray diffraction (XRD) patterns of the synthesized materials, aiding in the

rapid identification of successful synthesis outcomes.

2.1.3 Inverse Design in Materials Discovery

Building upon the integration of ML into materials discovery workflows, an even more

ambitious application is inverse design, often regarded as a significant milestone—or even

the “holy grail”—of materials discovery. Rather than adopting the traditional forward or

direct-design approach of starting with a known material and then determining its prop-

erties, inverse design begins by specifying target properties or functionalities (Figure 2.6).

Computational methods are then used to identify, generate, or suggest materials that fulfill
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Figure 2.6: Overview of direct and inverse approaches in materials discovery[2].

these specifications. This property-oriented framework is poised to efficiently traverse the

vast chemical and structural space, thereby minimizing trial-and-error experimentation

and accelerating the discovery of novel materials with precise functionalities[2], [47].

Although the concept of inverse design has been discussed for several decades, the rapid rise

of ML in materials science has significantly advanced its practical implementation. Thanks

to ML’s capacity to model high-dimensional data and capture complex structure–property

relationships, inverse design workflows have become more robust and predictive, offering

the potential for real-world applicability in diverse materials domains.

Despite its growing popularity, inverse design does not yet have a universally agreed-upon

definition within the materials science community. Some methodologies that effectively

implement an inverse design workflow do not explicitly label themselves as such. For

instance, while high-throughput screening (HTS) is often considered part of forward dis-

covery, some researchers classify it as a subset of inverse design. These terminological

distinctions highlight the evolving nature of the field, but the fundamental principle of in-

16



2.1.3 Inverse Design in Materials Discovery

verse design remains unchanged: instead of starting with a known material and analysing

its properties, we begin with a desired property and work backward to identify suitable

structures or compositions.

Three primary methodologies are commonly used in inverse design: (1) generative mod-

els, (2) iterative design strategies (e.g., active learning, Bayesian optimization, genetic

algorithms), and (3) invertible materials representations. Among these, generative mod-

els and invertible representations take a fundamentally different approach from iterative

techniques. While iterative methods refine candidate materials through sequential opti-

mization loops, generative models and invertible representations aim to construct viable

materials from scratch based on predefined target properties. By leveraging these ap-

proaches, researchers can efficiently explore vast chemical spaces and propose entirely new

material candidates, rather than incrementally improving known ones. This ability to

generate novel structures directly from property requirements makes these methods par-

ticularly valuable for inverse design. The following sections provide an in-depth overview

of generative models and invertible materials representations, examining their respective

strengths, limitations, and distinct roles in accelerating materials discovery.

Generative models

Generative models including Variational Autoencoders (VAEs) and Generative Adversar-

ial Networks (GANs), have emerged as powerful techniques for inverse design[3], [41], [48]–

[50]. In these frameworks, models learn probabilistic distributions over existing materials

or molecules. Once trained, they can generate new candidate structures or compositions

that are likely to exhibit desired properties, effectively “mapping” targeted characteristics

back to plausible chemical formulas or structural motifs. These methods are particu-

larly impactful in organic molecule design (e.g., pharmaceuticals, organic semiconduc-

tors), where a dense, high-quality dataset of known molecules can be leveraged to yield

innovative new candidates.

One of the earliest notable demonstrations of a generative model in materials discovery

was a VAE architecture composed of an encoder and decoder using recurrent neural net-
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Figure 2.7: Schematic representation of a typical generative model workflow[3].

works, designed to generate organic molecules[51]. Since then, generative models have

been applied across various material classes. For example, they have been used to gener-

ate novel metal–organic frameworks (MOFs) with exceptional gas separation properties[3].

More recently, MatterGen, a generative model introduced by Microsoft, has demonstrated

the ability to generate stable and diverse inorganic materials spanning the entire periodic

table. Moreover, it can be fine-tuned to design materials with specific target properties[41].

Despite these successes, the application of generative models remains largely limited to

material classes with relatively well-defined structures and abundant training data. Their

implementation in highly constrained materials systems, such as the organic spacers in

2D perovskites, is still rare. This limitation may stem from the scarcity of high-quality

datasets in these domains, which restricts the model’s ability to learn meaningful struc-

ture–property relationships. Without sufficient domain knowledge or physics-based con-

straints integrated into the learning process, generative models struggle to propose viable

candidates in these more complex materials spaces. Addressing these challenges will be

crucial for expanding the scope of inverse design methodologies to a broader range of
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materials.

Invertible Material Representations

A growing area of research focuses on developing bidirectional mappings between mate-

rial representations and desired property spaces[4], [52]. Unlike many black-box models

that learn an inverse mapping implicitly, invertible representations provide a more trans-

parent and structured approach to inverse design. This enables researchers to start in

the property domain and systematically work backward to identify candidate structures,

making the design process more interpretable and controllable. For molecular systems,

several well-established invertible representations exist, including simplified molecular-

input line-entry system (SMILES), international Chemical Identifier (INCHI) and molec-

ular graph[53]. These representations allow machine learning models to efficiently encode

molecular structures and generate new candidates based on specified properties.

Figure 2.8: Invertible representations in molecular systems and solid-state crystals[54].

For inorganic crystals, the development of invertible representations is more challenging.

Unlike molecules, where connectivity can be described in a straightforward manner, solid-

state materials require a representation that captures both periodicity and compositional

complexity. This has been a longstanding challenge in materials informatics, as achieving

invertibility while maintaining generalizability and property-driven design remains diffi-

cult. Several representations have been proposed to address this issue, but none have yet

become universal standard[4], [54].
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Despite these challenges, invertible material representations have significant potential in

inverse design, particularly when used in conjunction with machine learning models. By

establishing structured and reversible mappings between materials and their properties,

these representations provide a powerful framework for rational material generation, fa-

cilitating more efficient and targeted discovery.

2.2 2D Hybrid Perovskites

Two-dimensional (2D) hybrid perovskites have emerged as a fascinating class of materials

that combine the desirable optoelectronic properties of their three-dimensional counter-

parts with enhanced chemical and environmental stability. In general, these materials

consist of inorganic metal halide layers separated by organic cations, creating a natu-

rally layered architecture. By tuning the thickness of these inorganic layers or altering

the organic interlayers, researchers can tailor properties such as bandgap, exciton binding

energy, and overall structural stability. Thus, 2D perovskites have attracted attention

for applications ranging from solar cells and light-emitting diodes to photodetectors and

field-effect transistors[55].

Unlike 3D perovskites, where small organic cations (e.g., methylammonium or formami-

dinium) fit within the perovskite lattice, 2D perovskites incorporate larger organic spacer

molecules that enforce a layered structure and introduce new functionalities. This dimen-

sional reduction results in strong quantum confinement effects, leading to distinct optical

and electronic behaviours compared to their 3D analogy. In the following subsections, we

discuss the structural variations of 2D perovskites, focusing on key phase families, and

explore their fundamental electronic properties.

2.2.1 Structural and Electronic Fundamentals

Structural fundamentals
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Figure 2.9: Design strategy for organic spacers in 2D perovskites[6].

2D perovskites exhibit rich structural diversity, primarily arising from variations in both

the inorganic metal-halide framework and the organic spacers[56]. The inorganic layers are

composed of corner-sharing metal halide octahedra, which can stack to form structures

ranging from single-layered (strictly 2D perovskites, n = 1) to multi-layered (quasi-2D

perovskites, n > 1)[57]. As the number of inorganic layers approaches infinity (n → ∞),

the structure converges to that of a 3D perovskite. Additionally, the metal (e.g., Pb,

Sn) and halide (e.g., I, Br, Cl) compositions in the inorganic framework can be tuned,

with large chemical space available[58]. Meanwhile, the organic spacer cations play a

pivotal role in determining the exact structural phase (Figure 2.10), giving rise to three

main families of 2D perovskites: Ruddlesden–Popper (RP), Dion–Jacobson (DJ), and

Alternating Cation-Interlayer (ACI).

The RP phase represents the most extensively studied family of 2D perovskites and can

be described by the general formula (A’)2An−1MnX3n+1. Here, A′ is a bulky monovalent

organic spacer cation, A is a smaller monovalent cation (as seen in 3D perovskites), M

is a metal cation (e.g., Pb2+, Sn2+), and X is a halide anion. Two layers of organic

spacers intercalate between the inorganic slabs, creating a van der Waals gap. While many

RP-phase perovskites display an in-plane octahedral shift of (1/2, 1/2), more complex

tilts and distortions can occur with bulky or flexible organic spacers. Despite potential
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Figure 2.10: Schematic illustration of different structural phases of 2D perovskites[6].

drawbacks—such as restricted out-of-plane transport due to the van der Waals gap—RP

perovskites are valued for their strong excitonic effects, tunable bandgaps, and suitability

for light-emitting and photodetection applications[55], [59].

The DJ phase, described by the formula A’An−1MnX3n+1, where A’ is typically a diva-

lent organic spacer cation (e.g., diammonium compounds) with two ammonium tethering

groups anchor to the inorganic layers. In contrast to the RP phase, DJ perovskites have

only a single organic spacer layer between inorganic slabs, thus eliminating the van der

Waals gap and often reducing the interlayer distance[60]. This configuration improves out-

of-plane electronic coupling and charge transport while strengthening hydrogen-bonding

interactions—leading to excellent structural stability. Such attributes render DJ per-

ovskites promising candidates for high-efficiency solar cells and transistors[61].

The ACI phase is a relatively new structural motif where two different organic cations al-

ternate between the inorganic layers, with the first example demonstrated in 2017[62]. Of-

ten, the organic spacer cations are relatively small (comparable to methylammonium), re-

sulting in shorter interlayer distances and stronger interlayer coupling[63]. This structural

motif can yield a reduced bandgap and enhanced charge transport, and there have been

demonstrations of improved solar-cell efficiencies over comparable RP and DJ phases[64],
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[65]. However, because of stricter size constraints on the organic cations, the chemical

space for ACI-phase perovskites is comparatively smaller.

Figure 2.11: Electronic properties of 2D perovskites[66].

Electronic Fundamentals

The electronic structure of 2D perovskites is now relatively well understood, with their

band edges predominantly governed by the inorganic layers and their structural and di-

electric environment modulated by the organic spacers (Figure 2.11).

Generally, the bandgap widens as the thickness of the inorganic layer decreases (i.e., as

n decreases). For example, monolayer (n = 1) perovskites typically exhibit bandgaps

∼ 2.4 eV, while quasi-2D structures with larger n values approach the bandgap of the

corresponding 3D perovskite (∼ 1.5 eV for MAPbI3)[67]. This tunability has been lever-

aged in studies to induce an “energy funneling” effect, where charge carriers move from

wider-bandgap (lower-n) to narrower-bandgap (higher-n) regions, enhancing the efficiency

of light-emitting diodes[68]. Beyond structural thickness, the bandgap can also be finely

tuned by altering the metal cation (M = Pb2+, Sn2+) or halide anion (X = I−, Br−,

Cl−)[69].
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A defining feature that distinguishes 2D from 3D perovskites lies in the strong quantum

confinement effects inherent to their layered structure[70]. In 2D perovskites, the inorganic

slabs act as quantum wells, while the organic layers serve as wide-bandgap barriers[56].

This configuration leads to notably large exciton binding energies, ranging from 100 to 500

meV—substantially higher than the 10–50 meV typical of 3D perovskites—thus endowing

2D systems with pronounced excitonic behaviour advantageous for optoelectronic appli-

cations. However, the layered structure also induces highly anisotropic charge transport.

In-plane transport benefits from robust orbital overlap between the metal and halide,

often rivalling that in 3D perovskites (particularly for larger n values), whereas out-of-

plane transport is hindered by the insulating organic layers acting as barriers to carrier

motion[66].

Figure 2.12: Schematics of the quantum well effect in 2D perovskites[71].

One of the most actively explored strategies for improving 2D perovskite performance

is tuning their quantum well structure through composition engineering. Energy-level

alignments in these systems are generally categorized as type-I (straddling gap) or type-II

(staggered gap), with four possible configurations. Most 2D perovskites naturally adopting

a type-I configuration with organic component acts as the insulating barrier (Figure 2.12).
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Research has explored various approaches to modulating energy level alignment, including

altering the thickness and composition of the inorganic layer and tailoring the organic

spacer design[72]–[74]. Among these strategies, organic spacer engineering has emerged as

the most promising, demonstrating the ability to achieve all four possible types of energy

level alignment.

Despite these advancements, the tuning of energy level alignment remains limited, and

many organic spacers have yet to be explored for further optimization. In the following

section, we introduce design strategies for organic spacers to enhance their impact on

perovskite properties.

2.2.2 Design Strategies for Organic Spacers

As mentioned above, the organic spacer cations in 2D perovskites play a pivotal role in

determining their structural, electronic, and environmental stability properties. Rational

design of these spacers enables the tuning of perovskite properties to optimize performance

in optoelectronic devices.

The early discovery of organic spacers for 2D perovskites was largely serendipitous, driven

by the limited availability of organic cations known to incorporate into the perovskite

framework. Initial studies primarily focused on simple alkylammonium spacers, such as

butylammonium (BA) and propylammonium (PA), with research efforts centred on varying

spacer length or functional groups to improve film morphology and device performance[75]–

[77].

In recent years, spacer engineering has evolved significantly, shifting towards the deliber-

ate design of organic cations with tailored functionalities. This includes the exploration

of conjugated organic spacers, typically featuring aromatic systems such as benzene or

thiophene rings[78], [79]. The introduction of conjugation has been shown to enhanced

interactions between organic spacers, improved charge transport, and enable tunable op-

toelectronic properties[80]. Additionally, spacer modification strategies now encompass
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functional group engineering—such as side-chain substitutions, fluorination, and positional

adjustments of ammonium tethering groups—to finely control interlayer interactions, de-

fect passivation, and environmental stability.

Figure 2.13: Molecular size constraints for organic spacers in 2D perovskites[81].

To maintain the perovskite framework, organic spacers must satisfy certain structural and

chemical criteria. From a steric perspective, the size and shape of the organic spacer play a

crucial role in determining whether it can fit within the inorganic framework and stabilize

the 2D perovskite structure (Figure 2.13). While there is no strict limitation on the length

of the organic spacer—studies have successfully incorporated linear alkyl organic spacers

with up to 18 carbon atoms into 2D perovskite framework[82]–[84]—the cross-section area

must remain within a certain threshold to avoid exceeding the available space within the

2D perovskite lattice[85]. In particular, the cross-section width of the organic spacer, often
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approximated by the diameter of its conjugated backbone, should be smaller than width

of the MX6 octahedral unit[72]. If the spacer is too bulky, studies have shown that it can

lead to different structural dimensions or even disrupt the formation of a stable 2D lattice,

leading to 0D or 1D perovskite[86], [87].

Another critical consideration in designing organic spacers is the shape and configura-

tion of the ammonium head group, which strongly influences hydrogen bonding. In 2D

perovskites, this ammonium head typically fits into the cavity formed by the inorganic

octahedral network, creating hydrogen bonds that stabilize the overall structure[85], [88].

The halide ions in the inorganic framework serve as hydrogen-bond acceptors, necessitating

that the organic spacer contains a suitable hydrogen bond donor—typically an electron-

deficient nitrogen bearing at least one hydrogen. Primary ammonium groups (i.e., NH+
3 )

are widely used because they offer relatively strong hydrogen bonding, though secondary

(NH+
2 ) or tertiary ammonium group (NH+) can also participate in hydrogen bond, albeit

with generally lower bonding strength. Excessive steric hindrance around the nitrogen can

impede its insertion into the inorganic pocket and weaken these critical bonds, potentially

destabilizing the 2D perovskite. Typically, the hydrogen bond distance must remain below

∼ 3.0 − 3.5Å to provide sufficient structural stabilization[88].

Figure 2.14: Modulation of 2D perovskites formability by tuning linker length[89].

Recent work has demonstrated various strategies for modulating hydrogen bonding. In one
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study, researchers investigated organic spacers in which the ammonium tethering group

was placed at different positions along the molecule, altering the distance between the

ammonium head and the inorganic framework[90]. The spacer with the weakest hydro-

gen bonding formed a one-dimensional (1D) perovskite, whereas the two stronger-bonding

spacers yielded 2D structures. Another approach involved varying the length of linker seg-

ment between the ammonium head and the main body of the spacer, thereby increasing

conformational flexibility and enhancing hydrogen-bond interactions with the inorganic

lattice (Figure 2.14)[89], [91]. Additionally, functional group engineering—such as fluo-

rination—has been shown to further strengthen hydrogen bonds, likely due to the high

electronegativity and induced dipole moment of fluorine atoms[92].

Beyond the structural considerations necessary for forming a 2D perovskite, organic spacer

engineering also provides opportunities to tailor electronic properties. In many cases, the

organic spacer does not directly participate in the electronic structure of the inorganic

framework, allowing it to act primarily as a structural template. For instance, shorter or-

ganic spacers can reduce the interlayer distance and thereby enhance out-of-plane charge

transport[93]. Additionally, adjustments to the inorganic octahedral tilting can further

modulate the perovskite bandgap[79]. Some conjugated organic cations—particularly

those containing aromatic rings—are known to reduce energy barriers for charge transport

relative to their alkyl-based counterparts[94], [95].

Modifying the quantum well structure offers another route for electronic tuning. Introduc-

ing organic spacers with extended conjugation can shift the spacer’s frontier orbitals, po-

tentially inverting the quantum-well alignment from type I to type II. Achieving this often

requires complex spacer architectures with extended π-conjugation and functional-group

modifications. In one study, organic cations featuring a π-conjugated pyrene backbone

with varying linker lengths were introduced onto the perovskite surface. These cations

contributed electronically to the surface band edges and influenced carrier dynamics, ul-

timately improving solar cell efficiency[96]. In another series of studies (Figure 2.15),

oligothiophene-based organic spacers were incorporated into DJ-phase perovskites, with

both DFT calculations and experimental results confirming that increasing the number
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Figure 2.15: Engineering the energy level alignment in 2D perovskites by designing organic
spacers[9].

of aromatic rings effectively tuned the energy-level alignment, leading to the realization

of type-II alignment[9], [97]. Additionally, research on RP-phase perovskites has explored

highly conjugated organic spacers, demonstrating that modifications to functional groups

can achieve all four types of energy-level alignment. For instance, the introduction of

electron-withdrawing units enabled type-II alignment, where the organic LUMO and in-

organic VBM define the band edges. Meanwhile, incorporating a small bandgap unit

facilitated a reversed type-I alignment[72].

Despite the established design strategies for organic spacers in 2D perovskites, the op-

timization process remains highly complex. The intricate structural features of organic

spacers, along with their interactions with the inorganic framework, introduce a vast num-

ber of variables that are challenging to fully understand through conventional trial-and-

error methods or human intuition alone. To address this complexity, AI-driven approaches

have emerged as powerful tools for accelerating material discovery and optimization. The
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following section explores recent advancements in AI-driven methodologies for 2D per-

ovskites, with a particular emphasis on organic spacer design.

2.2.3 AI-Driven Approaches for 2D perovskites

ML methods have been extensively applied to the design of 3D perovskites, yet their use in

guiding the discovery and optimization of 2D perovskites remains in a comparatively early

stage. In 3D perovskites, a key focus has traditionally been an optimizing the inorganic

frameworks—often represented by elemental compositions that are relatively straightfor-

ward for computational methods to handle[26], [98], [99]. By contrast, 2D perovskites

incorporate both inorganic layers and organic spacers. The design challenge therefore

shifts prominently to selecting and engineering the organic spacer, which must meet spe-

cific geometric (e.g., size constraints) and chemical (e.g., functional group compatibility)

requirements.

Given that ML-assisted discovery of 2D perovskites is still in its early stages, relevant

studies in this field remain scarce. Therefore, to provide a broader perspective, below we

review ML application in three closely related research areas: organic spacer design in 2D

perovskites, hybrid materials interface design, and organic materials design.

The virtually unbounded chemical space of possible organic spacers has driven researchers

to explore ML and other data-driven strategies for 2D perovskites (Figure 2.16). An early

study has used ML models trained on 86 reported organic spacers in lead-based 2D per-

ovskites to derive design rules for predicting the perovskite dimensionality of five new

organic spacers[100]. Recent approaches have expanded the scope of spacer exploration

considerably. For instance, Wu et al. utilized a ML model trained on 80 high through-

put synthesized lead-free double perovskites to evaluate the synthesis feasibility of 8,460

organic spacers from PubChem[7]. In another study, molecular dynamics simulations on

over ten-thousand hypothetical organic spacers were used as training data to select six

new ligands for perovskite synthesis[8].
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Figure 2.16: Machine learning workflows for 2D perovskite design[7], [8], [100].

Beyond 2D perovskites, similar ML workflows have been applied to other hybrid materials

interfaces involving small molecules, particularly in passivation materials for perovskite

solar cells[27], [101], [102]. In these studies, ML workflows typically follow a three-step

approach. First, the physiochemical descriptors are selected based on domain knowledge.

Second, the descriptors are computed from the organic molecule structure. Finally, these

descriptors are used as input features for supervised machine learning models to predict

key properties. For example, a recent study used various regression models to predict the

power conversion efficiency (PCE) of perovskite solar cells passivated by ammonium salts,

using a set of physiochemical descriptors[101].

Compared to hybrid perovskites, ML-assisted design of organic materials is a relatively

mature field, with well-established methods for molecular representation and advanced

machine learning models[5], [24], [32], [35]. The most critical aspect of ML workflows in
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organic materials is how molecules are represented. Common molecular representations

include:

(1) SMILES (Simplified Molecular Input Line Entry System) – An invertible molecular

representation widely used in text-based ML models.

(2) Molecular fingerprints – Such as Morgan fingerprints or Extended Connectivity Fin-

gerprints (ECFPs), which have been extensively applied to polymer design, peptide engi-

neering, and organic emitter discovery.

For instance, a recent study used a 2048-bit Morgan fingerprint to represent heat-resistant

polymers, combined with a feed-forward neural network to down-select promising candi-

dates from a virtual library[32]. These representation techniques, combined with advanced

ML models, have proven effective for guiding molecular design. However, directly applying

these techniques to 2D perovskites is not straightforward due to the added complexity of

the organic–inorganic interface.

A major limitation of the current ML approaches in 2D perovskites is their reliance on for-

ward design workflows, which require exhaustive brute-force screening of chemical space.

Since organic spacers must be predefined before descriptors can be calculated, the ap-

proach is not invertible, preventing direct generation of new molecular structures from

target properties. Moreover, descriptor-based representations often fail to fully capture

the molecular complexity of organic spacers. Such brute-force screening can be computa-

tionally expensive and may miss promising regions of chemical space if the initial library

is not sufficiently diverse. Therefore, inverse design—where desired properties are defined

a priori, and algorithms propose candidate molecules or structures—holds the promise of

accelerating materials discovery for 2D perovskites.

Furthermore, much of the pioneering ML work on 2D perovskites has been centred on ques-

tions of formability and stability, a critical gap remains in the application of AI-assisted

workflow to predict physical properties of 2D perovskites. Energy level alignment, a key

property controlling the spatial distribution and transfer of charge carriers and excitations
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in semiconducting materials and their interfaces, directly impacts the performance of op-

toelectronic devices. Different from well-studied elemental and compound semiconductors,

organic and inorganic components in hybrid perovskites are heterogeneous with separate

energetics, forming quantum-well-like structures[9]. Although 2D perovskites have been

investigated using traditional workflows, such as the Edisonian approach[72] and high-

throughput calculations[103], [104], systematic exploration of the energy level alignment

through AI-assisted approaches is still in its early stages[105], presenting a significant

opportunity for advancement.

2.3 Summary and Research Gaps

In the preceding sections, we introduced the two main pillars of this thesis: AI-assisted

materials discovery—with particular attention to inverse design methodologies—and the

design challenges posed by 2D perovskites, especially in the context of organic spacers.

Their intersection is the central focus of this work.

From the perspective of 2D perovskite design, the vast chemical space of organic spacers

necessitates the use of data-driven and machine learning techniques. These materials

exhibit highly intricate structure–property relationships, with many potentially relevant

features that are difficult to fully grasp through traditional approaches. To tackle this

complexity, we focus on DJ-phase n=1 Pb–I-based perovskites as a prototype system for

studying structure–property relationships. Insights gained from this prototype can then

be generalized to other 2D perovskite phases and alternative inorganic frameworks. We

choose energy level alignment as our target property, as it is crucial for optoelectronic

applications yet remains insufficiently understood.

From the viewpoint of AI-assisted inverse materials design, this 2D perovskite system

presents an equally compelling challenge. Unlike more extensively studied materials with

large, well-curated datasets, 2D perovskites are relatively data-scarce and uniquely hy-

brid in nature, requiring careful consideration of both organic and inorganic components.
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While inverse design methodologies have shown promise for inorganic materials, organic

molecules, and polymers, 2D perovskites introduce additional constraints—such as spacer

size limitations and the complex organic–inorganic interface—that necessitate novel AI-

driven approaches.

Moreover, the insights gained from this research could extend beyond 2D perovskites

to a broader class of hybrid materials, where the intricate interplay between organic and

inorganic components defines material properties. As emerging materials fields often suffer

from data scarcity, developing machine learning strategies tailored to these challenges is

essential. By leveraging AI in such contexts, we aim to contribute to a generalizable

framework for hybrid material discovery, enabling data-driven innovation in materials

science.

This thesis addresses several critical research gaps in the field of AI-driven 2D perovskite

design:

• Lack of large, high-quality datasets for 2D perovskites – Unlike well-established

materials, 2D perovskites suffer from data scarcity. Existing datasets are often small,

inconsistent, or lack standardization, limiting the ability of machine learning models

to generalize effectively.

• Limited understanding of structure–property relationships – A quantitative and pre-

dictive understanding of how organic spacer chemistry influences electronic proper-

ties and synthesizability remains underdeveloped. The complexity of organic–inorganic

interactions make it challenging to establish clear design rules.

• Challenges in inverse design for 2D perovskites – Existing inverse design models do

not fully accommodate the unique constraints of hybrid materials, such as the size

limitations of organic spacers and the chemical constraints associated with functional

group compatibility.

• Challenges in AI-assisted approaches for hybrid materials – The absence of a stan-

dardized ML workflow for hybrid materials poses a significant barrier. Feature
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selection remains underdeveloped, and machine learning models struggle to en-

code key chemical and structural descriptors necessary for accurately modelling or-

ganic–inorganic interactions.

Addressing these challenges requires robust, AI-driven frameworks tailored to 2D per-

ovskite design—particularly those that incorporate domain expertise, and feature property-

driven design. The present thesis aims to bridge some of these gaps by exploring inverse

design workflows that couple molecular design with inorganic framework constraints, ul-

timately accelerating the discovery of high-performance 2D perovskite materials.
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Chapter 3

Methodology

This chapter outlines the methodology developed for the inverse design of DJ-phase 2D

perovskites. Section 3.1 provides an overview of the overall design framework, which inte-

grates chemical space establishment, property prediction, and synthesis feasibility. Section

3.2 introduces the core component of the workflow: an invertible and interpretable molec-

ular fingerprint tailored for organic spacer design. The subsequent sections detail the

key pipelines of the framework, including high-throughput calculations (Section 3.3), ma-

chine learning model development and evaluation (Section 3.4), and the two-step synthesis

feasibility screening process (Section 3.5).

3.1 Overview of the inverse design workflow

The AI-assisted inverse design workflow is illustrated in Figure 3.1. This workflow hinges

on a unique 12-digit fingerprint representation scheme to navigate the chemical space of

organic spacers, integrating DFT calculations, machine learning, and synthesis feasibil-

ity screening. First, hypothetical candidates are generated using a molecular morphing

approach and selected for DFT calculation. Second, the DFT data are used to train

interpretable machine learning models, accelerating property predictions and revealing
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Figure 3.1: AI-assisted inverse design workflow for discovering DJ perovskites with tar-
geted energetics and synthesis feasibility.

structure-property relationships. Third, synthesis feasibility is assessed based on the syn-

thetic accessibility of organic spacers and their potential to form stable 2D structures.

Finally, these 2D perovskites undergo DFT validation to confirm their energy level align-

ment, leading to a selection of recommended candidates.

This workflow was designed based on the unique nature of 2D hybrid perovskites and the

targeted property of band alignment. It begins with chemical space expansion using a

molecular morphing approach. To realize an invertible representation of conjugated di-

ammonium organic spacers, they are encoded into a compact 12-digit fingerprint vector.

Based on the physical insights obtained on 21 existing spacers reported for DJ perovskites,

we generated the fingerprints of approximately 4×106 hypothetical spacers with complex-

ity comparable to the reported ones. High-throughput density functional theory (DFT)

calculations were then used to evaluate the energy levels of the corresponding hybrid per-
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ovskites within a designated subset of the chemical space, which were used as the training

data. Next, various regression models were trained using fingerprints as input features

and organic frontier levels as target property, aiming to extract insights on the structure-

property relationship. The hypothetical spacers were then down selected using a two-step

synthesis feasibility screening funnel based on their availability in the PubChem database

and multiple reported formability descriptors specific to forming 2D perovskite structures.

Lastly, feasible candidates for targeted energy level alignment types are validated using

DFT calculation. By integrating these components, the workflow facilitates inverse design

of DJ perovskites with rarely explored Ib, IIa and IIb band alignment types.

Figure 3.2: Schematic representation of energy level alignment types in 2D perovskites.

The classification of the energy level alignment types is shown in Figure 3.2. In type

I alignment, both low-energy electrons and holes are localized in the same component:

type Ia in the inorganic layers and type Ib in the organic layers. In type II alignments,

electrons and holes are separated between different components: in type IIa, electrons

are localized in the inorganic layers and holes in the organic layers, whereas in type IIb,

the reverse occurs. It should be noted that the designations “a” and “b” are sometimes
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interchanged in the literature depending on the component being emphasized[9]. In other

studies, only type I and type II are referenced without further categorization[72], and type

Ib in our context is occasionally described as “reversed type I”[106]. Notably, alignment

type Ia is referred to as type Ib in some literature[9], [69]; here, we defined type Ia as the

configuration where inorganic states serving as the band edges.

While the components of this workflow—database generation, high-throughput calcula-

tions, machine learning, and DFT validation—are common to AI-assisted materials dis-

covery[29], [107], the distinctive feature here is the integration of an invertible materials

representation. Invertibility is a key attribute for materials representations in inverse de-

sign[2], ensuring two-way conversion between molecular structure and their representation.

This type of invertible representation has been applied to some materials systems[3], [4],

but this is the first implementation in the context of hybrid materials. The absence of a

versatile scheme of organic spacer representation has confined 2D perovskite research to

forward design approaches, limiting the exploration of available chemical space. As we will

show in this thesis, the workflow developed herein overcomes these limitations, facilitating

the energy level alignment prediction. In addition, we expect that this fingerprint-based

workflow will be generalized to investigate the correlation of other material properties with

organic motifs in a wide range of hybrid material systems.

3.2 Invertible Molecular Fingerprints

Figure 3.3 depicts an overview of our fingerprinting scheme, which is based on the specific

attributes of conjugated organic cations in 2D DJ perovskites, comprising two key compo-

nents: molecular fragmentation and functional group encoding. Organic spacers are first

fragmented into their building blocks (backbone, tethering ammonium, side chain, and

substitutions) and then these building blocks are further encoded into a 12-digit finger-

print.

Fragmentation
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Figure 3.3: Invertible molecular fingerprint representation for organic spacers in DJ per-
ovskites.

The fragmentation is designed considering the structural motifs shared by reported con-

jugated diammonium spacers, as shown in Figure 3.4. The DJ-phase organic spacers

explored in this work are assumed to consist of four fragments:

(1) a conjugated backbone of aromatic rings;

(2) two tethering ammonium groups that anchor the spacer to the inorganic framework;

(3) optional heteroatom substitutions;

(4) optional side chains.

In this work, we limit the heteroatom substitutions to fluorine (F), oxygen (O), and

nitrogen (N) on aromatic rings (benzene and thiophene). This simplification is based on

two primary considerations: (1) their widespread use in semiconducting organic spacers

within 2D perovskite systems, and (2) the need to preserve a chemically interpretable and

synthetically accessible design space. Although including additional heteroatoms such as

chlorine (Cl), bromine (Br), or phosphorus (P) could enhance electronic diversity, doing

so would substantially expand the chemical space, increase fingerprint complexity, and

introduce greater uncertainty in terms of synthetic feasibility and structural compatibility

with the perovskite lattice.
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Figure 3.4: Reported organic spacers included in this study with their molecular finger-
print.
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These structural constraints significantly narrow the chemical space from a potentially

immense size (estimated at ∼ 1060 molecules for small organic molecules, as recognized in

the context of drug discovery[108]) to a much smaller subspace of organic spacers.

We should note that the resulting chemical space is not exhaustive, leaving out some

spacers, for example ones with alkyl backbones or non-continuous conjugation (Figure 3.5).

This fingerprinting scheme leads to a chemically relevant and computationally manageable

set of organic cations (vide infra), giving rise to 2D DJ perovskite candidates with tailored

properties. We primarily focused on semiconducting π-conjugated molecules due to their

high relevance to optoelectronic applications of 2D perovskites and rich chemical diversity.

Encoding

Ammonium position descriptor
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Figure 3.6: Illustration of the ammonium position descriptor.

The encoding component of the scheme translates molecular structure into a fingerprint

vector containing 12 customized descriptors, each representing a specific structural feature.

Eleven descriptors are obtained by counting functional groups, while a unique “ammonium
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position” descriptor is derived from a distance matrix (Figure 3.6). The main principle

is to choose a minimal number of descriptors to reduce computational cost while these

descriptors must be sufficient to describe the organic spacers relevant to DJ perovskites.

As we will show later in the ML results in Chapter 4, there is minimal overlap between

the descriptors, and they capture essential features for energy level prediction.

For high-throughput purposes, all organic spacer structures in this study were stored in

the Simplified Molecular Input Line Entry System (SMILES) format, a widely used textual

representation of molecular structure. Molecular fingerprinting was performed to extract

key structural and chemical descriptors automatically using the RDKit library in Python.

The workflow took the SMILES representation of the organic spacer as input and returned

a set of 12 organic descriptors, categorized as follows:

1. Conjugated backbone descriptors: number of rings; percentage of ring linkages; per-

centage of six-membered rings

2. Tethering ammonium descriptors: number of primary ammonium groups (NH+
3 );

linker length (distance between ammonium groups and backbone); and ammonium

position on the backbone

3. Heteroatom substitution descriptors: number of nitrogen atoms (pyridine-type);

number of fluorine atoms, number of oxygen atoms (furan-type); number of nitrogen

atoms (pyrrole-type)

4. Side chain descriptors: number of side chain attached to linkers; number of side

chains attached to the backbone

Descriptors were computed using SMARTS (SMiles ARbitrary Target Specification) pat-

terns, enabling the identification and counting of specific functional groups. A new de-

scriptor, the ammonium position on the backbone, was developed specifically for this

work. This descriptor quantifies the relative position of tethering ammonium groups on

the conjugated backbone using a distance matrix approach, as depicted in Figure 3.6.
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The ammonium position descriptor is derived from the molecular skeleton using a distance

matrix. This descriptor is calculated as the ratio of the maximum distance along the

conjugated backbone to the distance between the tethering ammonium group and the

backbone. Representative organic spacers with their corresponding ammonium position

descriptors are shown in Figure 3.6.

We should note that the molecule-fingerprint correspondence is not exclusive, in other

words, some molecular isomers share the same fingerprint. Although additional descrip-

tors, or longer fingerprints (e.g., heteroatom substitution position, and side chain position)

could offer more structural detail, we found such features have minimal impact on elec-

tronic properties, making the current fingerprinting scheme sufficient for predicting new

DJ perovskites with all four band alignment types.

Figure 3.7 illustrates the relationship between a fingerprint and its corresponding organic

spacer(s). The upper panel shows a one-to-one mapping, where a fingerprint corresponds

to a single organic spacer. In contrast, the lower panel shows a one-to-many mapping,

where multiple organic spacers (isomers) share the same fingerprint, including the example

shown in Figure 3.3. These isomers may differ in structural features such as the position

of heteroatom substitution, side chain placement, or the linker length between tethering

ammonium groups. While such variations may affect to a certain extent the chemical and

physical properties of the cations, the the energy levels are almost the same due to the

shared molecular backbone. However, these isomers may have different levels of synthesis

feasibility, which warrants elucidation based on future detailed analysis and experimental

efforts. At this stage, no additional screening is applied to these isomers. All molecules

corresponding to a given fingerprint are retained in the dataset to preserve the full chemical

diversity for downstream analysis.

In previous AI-assisted 2D perovskite discovery efforts, organic spacers are typically rep-

resented using physiochemical descriptors[7], [8], but an effective molecular representation

scheme that can explicitly capture the molecular structure has not been established. In the

myriad research fields involving organic molecules, the structural variations are often en-

coded using digits (e.g., fingerprints), strings (e.g., SMILES), or graph-based methods[2].
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Figure 3.7: An illustration of one-to-one (top) and one-to-multiple (bottom) mappings
between a molecular fingerprint and its corresponding organic spacer(s).

Among these, fingerprinting methods—such as the widely adopted but non-invertible 2048-

digit Morgan fingerprint—have demonstrated their efficiency in AI-assisted workflow[32],

[43]. In contrast, our 12-digit fingerprint scheme has been tailored according to the spe-

cific attributes of 2D hybrid perovskites, offering several advantages. First, it is efficient,

with minimal redundancy and overlap between descriptors, ensuring a compact represen-

tation that captures structural variation most relevant to DJ perovskites. Second, it is

interpretable, enabling human experts to extract meaningful insights into the encoded

structural variations. Finally, it is invertible, allowing direct mapping back to the molec-

ular structure by both human experts and machines, which is essential for inverse design.
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3.3 High-throughput calculation

Molecular morphing

Molecular morphing was implemented as a systematic method to explore chemical space by

generating variants of molecular structure. The process used reaction SMARTS patterns

implemented in the RDKit library to iteratively apply predefined chemical transforma-

tions. This approach performs stepwise modifications on a starting molecular structure,

generating new variants while adhering to defined chemical constraints.

Figure 3.8: List of molecular morphing operators used in this study for generation of
hypothetical organic spacers.
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The molecular morphing process began with PDMA, a well-characterized prototype molecule,

represented in SMILES format. As shown in Figure 3.8, a set of 13 morphing operators,

encoded as 17 unique SMARTS patterns, was defined to ensure that each transformation

adhered to established chemical constraints. These morphing operation include: increas-

ing number of rings, substituting heteroatoms on aromatic rings, modifying linker lengths,

etc.

Each operator was applied iteratively to the starting molecule to generate new molecu-

lar structures. The newly generated molecules were stored as SMILES strings, ensuring

compatibility with downstream fingerprinting and modelling workflows.

PDMA was chosen as the starting molecule due to its structural simplicity and extensive

study in the literature. Figure 3.9 illustrates the distribution of existing spacers across

generations when different candidates are selected as G0 molecules. PDMA (top right)

was selected because it results in most existing spacers appearing in early generations,

demonstrating its structural simplicity and suitability for easy transformation into other

molecular structures via morphing operations.

Frontier level calculation of organic spacers

The 3D molecular structures of organic spacers were generated from SMILES string using

the RDKit library, which efficiently converts the molecular graph representations into 3D

coordinates. Conformational sampling was conducted assuming the isolated, gas-phase

configurations of the spacers, independent of their incorporation into the 2D perovskite

structure.

DFT calculations were performed using Gaussian 09 package with the B3LYP functional

and 6-31G** basis set to calculate the energy levels of the HOMO and LUMO.

Hybrid Perovskite Structure Generation

The hybrid perovskite structures were constructed by inserting the organic spacers into a

PbI4-based inorganic framework. Initial conformations of the organic spacers were visu-
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Figure 3.9: Rationale for selection of PDMA as the generation G0 organic spacer.

alized in Avogadro and adjusted according to literature-reported configurations to reflect

their likely conformations within the 2D perovskites. Specific modifications include:

(1) Ensuring the linearity of linker groups to reduce aggregation effects observed in isolated

forms.

(2) Constraining rotations of linked aromatic rings to reflect dihedral angles typically found

in hybrid perovskites, which are smaller than those in the isolated gas phase. For instance,

benzene-benzene linkages were assigned a dihedral angle of 20°; thiophene-thiophene and

thiophene-benzene linkages were constrained to 0°.

A 2 × 2 × 1 supercell of PbI6 octahedra was employed (each unit cell containing four

organic spacers and four PbI4 units), starting with an ideal cubic configuration in inorganic

layers. Organic spacers are aligned along the lattice c direction, with two ammonium

tethering groups intercalated within the cavities formed by the PbI6 octahedra. Organic
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spacers are arranged in herringbone (out-of-phase) configuration. This configuration was

chosen as it is frequently observed in experimental studies, with minimal influence on

the electronic structure compared to other configurations. Interlayer distances between

neighbouring PbI4 layers were modulated according to spacer length, ensuring realistic

structural representation. The framework was built programmatically using a combination

of RDKit and pymatgen.

Figure 3.10: Crystal structures and band structures of DJ perovskites with different or-
ganic spacer packing arrangements. Two example spacers are shown. Panels a and c
illustrate out-of-phase (herringbone) packing, while b and d show in-phase packing.

Figure 3.10 shows a comparison between different packing pattern of organic spacers and

their influence on the energy level in 2D perovskites. Figure 3.10a and c shows the out-

of-phase (herringbone) arrangement of organic spacers. This configuration is commonly

observed in reported 2D perovskites, and our DFT calculation indicate this type of packing

leads to minimal dispersion of molecular orbitals. Figure 3.10b and d shows the in-phase

arrangement, a configuration typically found in oligomer thiophene-based spacers. Our

DFT calculation indicate that the molecular orbitals exhibit sizable dispersion (∼ 0.7 eV

as observed in this study), consistent with previous reports attributing this behaviour to

electronic coupling among tightly packed adjacent organic spacers[109]. Notably, one study

indicates that out-of-phase configurations are energetically favoured[110]. For consistency,

we adopt the out-of-phase packing pattern across all structures. We anticipate that this
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in-plane dispersion of molecular orbitals will not affect our proposed final candidates for

energy level alignment type Ib, IIa, and IIb, as this dispersion primarily broadens the

organic frontier levels without shifting their centres.

Perovskite Structure Relaxation

DFT-based structure relaxations were performed using the Vienna Ab initio Simulation

Package (VASP) with the Perdew-Burke-Ernzerhof (PBE) functional and projector aug-

mented wave (PAW) pseudopotentials. Grimme’s DFT-D3 dispersion correction with zero

damping was included to account for van der Waals interactions critical to layered per-

ovskites. Relaxation was conducted in two steps:

(1) A preliminary relaxation with a loose reciprocal density of 64 (resulting in k-point

grids such as 1 × 1 × 1 or 1 × 1 × 2, depending on the lattice parameters along the c-axis).

(2) A tighter relaxation with a reciprocal density of 300 (resulting in k-point grids such as

3 × 3 × 2, 3 × 3 × 3, or 3 × 3 × 4). Convergence criteria required an energy difference per

atom below 5 × 10−6 eV.

Electronic Structure Calculations

To investigate the electronic properties of 2D perovskites, spin-orbit coupling (SOC) was

included due to the significant relativistic effects in Pb-based compounds. The following

workflow addressed the known limitations of commonly used functionals in predicting

bandgap values and ensure alignment with experimental data:

1. Band structure shape identification: The band structure across the Brillouin zone

was initially calculated using the PBE+SOC functional. This functional effectively

captures the qualitative shape of the band structure but is known to underestimate

the bandgap for perovskite materials. The results provided a foundational map of

the electronic band dispersion.

2. Accurate bandgap calculation at representative points: To obtain accurate bandgap

values, the HSE06+SOC hybrid functional was applied at critical points in the
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Brillouin zone (Γ and Z). This method corrects the bandgap underestimation of

PBE+SOC, ensuring quantitative agreement with experimental values. For struc-

tures with interlayer distances below 5 Å, calculations were performed at both Γ and

Z points to capture the dispersion of inorganic bands from Γ to Z. For larger inter-

layer distances (greater than 5 Å), calculations were focused on the Γ point only, as

the dispersion becomes negligible. A Hartree-Fock exchange (HF) percentage of 40%

was used in the HSE06+SOC calculations, yielding bandgap values with a deviation

of only 0.05 eV from experimental results.

Figure 3.11: Effect of Hartree–Fock (HF) mixing factor on the calculated energy levels of
organic and inorganic components in DJ-phase perovskites with the G0 molecule (PDMA).
a Variation in energy level alignment with increasing HF mixing. b Evolution of the
organic and inorganic energy gaps as a function of HF mixing factor.

Figure 3.11 shows the impact of mixing factor on the organic frontier levels in DJ

perovskite. A range of mixing factors (25% to 45%) has been employed in earlier

studies to match experimental bandgap values. In this work, we select a mixing

factor of 40%, as it yields the smallest average error of 0.05 eV. The mixing factor

impacts the organic levels slightly more than the inorganic levels, though both follow

very similar trends. This suggests that the energy level alignment type is unlikely

to vary significantly for most proposed DJ perovskites.

Table 3.1 and 3.2 shows the bandgap of several existing DJ perovskites with different

mixing factors, confirming the mixing factor of 40% yield the smallest error compared
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Figure 3.12: Reported organic spacers for which experimental bandgap values have been
measured in the corresponding DJ perovskites.

Table 3.1: Comparison of bandgap values calculated using HSE + SOC, HF=40% and
reported experimental values. Compound IDs correspond to the organic spacers listed in
Figure 3.12.

Compound Calculation (eV) Experiment (eV)
1 2.42 -[79]
2 2.26 2.34[79]
3 2.39 2.42[111]
4 2.56 2.44[91], 2.42[112]
5 2.42 2.46[91], 2.43[113]
6 2.57 2.58[113]
7 2.38 2.52[114]
8 2.56 2.42[114]
9 2.56 2.39[114]
10 2.79 -[110]
11 2.38 2.38[97]

to experimental value.

3. Refined band structure across the Brillouin zone: To extend the high accuracy of

HSE06+SOC calculations across the entire Brillouin zone without incurring the pro-

hibitive computational cost, a scissoring technique was applied. The band structure
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Table 3.2: Effect of HF mixing factor on the bandgap values of DJ perovskites. Compound
IDs correspond to the organic spacers listed in Figure 3.12.

Compound 2 (eV) Compound 4 (eV)
Experiment 2.34[79] 2.44[91], 2.42[112]
25% 1.82 2.12
30% 1.97 2.26
35% 2.11 2.41
40% 2.26 2.56
45% 2.42 2.71

obtained from PBE+SOC was adjusted using the band edges calculated at the Γ

and Z points with HSE06+SOC. The scissoring operation aligned the PBE+SOC-

derived band structure with the inorganic band edge and organic frontier orbital

levels predicted by HSE06+SOC, providing a consistent, high-fidelity representation

of the electronic structure.

High-throughput framework

The high-throughput DFT calculations for both organic spacers and hybrid perovskite

structures were conducted on the Gadi supercomputer, utilizing a workflow based on the

Materials Project (MP) input parameter template. The MP standards are widely recog-

nized as the minimal benchmark in the field of DFT calculations, ensuring reproducibility

and consistency across studies. These parameters are particularly suitable for capturing

the general structural and electronic properties of a wide range of materials.

To meet the specific demands of hybrid perovskite systems, which are characterized by

strong spin-orbit coupling, van der Waals interactions, and low-symmetry structures, we

further refined and tightened the computational parameters. Key refinements included:

• Energy Convergence Criterion: The MP default for electronic energy convergence

(EDIFF) is 5 × 10−5 eV per calculation. For our study, we set a stricter threshold

of 5 × 10−6 eV per atom to ensure reliable energy differences for low-symmetry

perovskite structures.
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• Plane-Wave Cutoff Energy: While the MP standard cutoff energy is typically 520 eV,

we adjusted this to 480 eV, as testing showed that this value-maintained accuracy

for perovskite systems while optimizing computational efficiency.

• Reciprocal Space Sampling: For initial structural relaxation, we used the default

MP reciprocal density of 64 (resulting in k-point grids such as 1 × 1 × 1 or 1 × 1 ×

2, depending on the c-axis lattice parameter). For final relaxation and electronic

property calculations, we increased the reciprocal density to 300, corresponding to

dense k-point grids such as 3 × 3 × 3, 3 × 3 × 2, or 3 × 3 × 4. This stricter k-

point sampling ensured accurate modelling of structural distortions and electronic

properties in the layered perovskites.

• Dispersion Corrections: To account for van der Waals interactions in layered systems,

Grimme’s DFT-D3 dispersion correction with zero damping was included. This re-

finement is critical for accurately describing interlayer interactions in 2D perovskites.

The high-throughput framework was automated using the pymatgen library to gener-

ate VASP input files and parse outputs, enabling systematic and efficient exploration of

∼ 3, 000 organic spacers and ∼ 400 hybrid perovskite structures. By building on the min-

imal standards established by the Materials Project and incorporating additional refine-

ments specific to perovskites, we ensured that our computational results met the highest

standards of accuracy and reliability for this material system.

3.4 Machine Learning

All machine learning tasks in this thesis were conducted using the Scikit-learn library in

Python. This included data preprocessing, dimensionality reduction, training of regression

and classification models, and extraction of feature coefficients for model interpretation.

Dimensional reduction for chemical space visualization
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To visualize the chemical space of organic spacers, we employed unsupervised learning

techniques for dimensionality reduction. We compared Principal Component Analysis

(PCA), a linear dimensionality reduction method, with t-distributed stochastic neighbour

embedding (t-SNE), a nonlinear technique designed to capture complex high-dimensional

data structures in a lower-dimensional space. While PCA provided an initial overview,

the resulting plots exhibited significant overlap between data points, limiting its ability to

distinguish between structurally diverse spacers. Consequently, we selected t-SNE for its

superior capability in preserving local and global relationships within the data.

Each spacer was represented numerically using a 12-dimensional fingerprint vector that

encodes key structural and chemical features relevant to our analysis. The dataset, com-

prising ∼ 20, 000 fingerprints corresponding to ∼ 4 × 106 spacers generated across gen-

erations G0 to G6, was subjected to t-SNE analysis. We utilized a perplexity of 40 to

balance the consideration of local and global data structures, optimizing the algorithm’s

sensitivity to both densely and sparsely populated regions of the chemical space.

The output of this process was a set of two-dimensional coordinates that effectively rep-

resent the high-dimensional chemical space of the spacers, enabling clear visualization of

structural similarities and differences across spacer generations.

Data Collection and Input Features

The dataset comprised high-throughput computational data on 3,239 organic molecules

across generations G0 to G4 with varying structural and electronic properties. The target

properties for prediction were the highest occupied molecular orbital (HOMO) and lowest

unoccupied molecular orbital (LUMO) energies of isolated organic spacers.

The input features were 12-digit organic fingerprints, which are highly relevant to the tar-

get properties due to their comprehensive representation of molecular descriptors. These

fingerprints capture the chemical, electronic, and structural characteristics of the organic

molecules, providing a robust basis for predictive modelling. Correlation analysis revealed

minimal redundancy among the features, negating the need for additional feature selection
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methods.

To ensure comparability across features, all input data were normalized to have zero mean

and unit variance using the StandardScaler module in the Scikit-learn library. This nor-

malization step mitigates bias arising from differences in feature scales, thereby optimizing

model performance.

Model Training and Validation

The data was partitioned into training and test sets using an 80:20 random split, ensuring

an unbiased evaluation of model performance. The training data was further subjected to

five-fold cross-validation to ensure robustness and to avoid overfitting.

Table 3.3: Hyperparameters for various regression ML models for HOMO and LUMO
predictions.

Method HOMO LUMO
Linear regression no hyperparameter no hyperparameter
Lasso regression α = 0.001 α = 0.001
Ridge regression α = 1.0 α = 5.0
Elastic net regression α = 0.001 α = 0.001
SVM (kernel = linear) C = 20, ϵ = 0.1 C = 10, ϵ = 0.1
SVM (kernel = rbf) C = 10, ϵ = 0.1 C = 10, ϵ = 0.1
SVM (kernel = poly) C = 1, ϵ = 0.1 C = 1, ϵ = 0.1
K neighbours regressor n_neighbours = 7 n_neighbours = 7
Random forest regressor n_estimators = 100 n_estimators = 100

We evaluated the performance of several machine learning models implemented in the

Scikit-learn library. Grid search with cross-validation was used to identify optimal hyper-

parameters for each model, as summarized in Table 3.3.

All models with optimal hypterparameters were evaluated using 15-fold cross-validation

(cv=15) implemented via Scikit-learn’s cross_validate function to ensure consistent and

reliable estimation of fitting error.

Performance metrics

The models were evaluated based on two key metrics:

57



CHAPTER 3. METHODOLOGY

(1) R2 Score. Quantifying the proportion of variance explained by the model, with higher

values indicating better fit.

R2 = 1 − SSRES
SSTOT

= 1 −
∑

i(yi − ŷi)2∑
i(yi − ȳ)2 (3.1)

(2) Root Mean Squared Error (RMSE): Providing an absolute measure of predictive ac-

curacy, with lower values indicating smaller residual errors.

RMSE =

√√√√√ n∑
i=1

(ŷi − yi)2

n
(3.2)

Both metrics were calculated for the training and test datasets. The results demonstrated

excellent predictive performance for both linear (∼ 0.95) and non-linear models (∼ 0.99).

This level of performance suggests that the relationships in the data are well captured

by the chosen models, obviating the need for more advanced techniques, such as deep

learning, for this study.

LASSO regressions were selected as the optimal model due to their decent predictive

accuracy and interpretability. The importance of each input feature, both normalized

coefficient and unnormalized coefficient, was analysed to verify the contribution of the

organic fingerprint descriptors to the target predictions.

SHAP value analysis.

To interpret the feature importance and contribution of individual organic descriptors in

predicting HOMO/LUMO, we employed SHapley Additive exPlanations (SHAP) values.

SHAP values provide a game-theoretic approach to quantify each feature’s impact on the

model’s output.

Unlike the conventional approach of using the average feature value as the reference point,

we calibrated all SHAP values using a baseline molecule from Generation 0. This calibra-
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tion allowed us to directly compare feature contributions relative to a chemically mean-

ingful reference, facilitating more insightful interpretations.

The SHAP values were computed and visualized using the SHAP library in Python.

3.5 Synthesis feasibility screening

PubChem existence

The presence of an organic spacer in the PubChem database was used as a proxy for

synthetic accessibility. PubChem is a comprehensive chemical information repository,

widely used to assess the availability and feasibility of molecular synthesis.

The neural form of organic spacers is converted to SMILES format to ensure compatibility

with PubChem’s search algorithms. The neutral SMILES string was used to retrieve

chemical information via the pubchempy library, which interacts with the PubChem API.

Key identifiers, including the compound identifier (CID) and International Union of Pure

and Applied Chemistry (IUPAC) name, were extracted for each molecule.

Due to limitations on the number of requests allowed by the PubChem API, this pro-

cess was computationally slower than other components of the high-throughput pipeline.

Therefore, synthetic accessibility screening was limited to the generations G0−G4 molecules,

totalling approximately ∼ 104 candidates.

2D structure formability

The formability of a 2D perovskite structure was evaluated based on the spatial and

chemical properties of hydrogen-donor nitrogen atoms within the organic spacers. Four

descriptors were used to quantify the formability of the candidate spacers:

1. Steric hindrance index (STEI): This descriptor measures the steric hindrance around

a target nitrogen atom, calculated as the inverse sum of the cubed distances to all
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other atoms in the molecule:

STEINi =
n∑

j=1

1(
dNi−Atomj

)3 (3.3)

A larger STEI indicates a higher density of nearby atoms, increasing steric hindrance

and potentially reducing the likelihood of forming hydrogen bonds with the inorganic

framework.

2. Eccentricity: Eccentricity quantifies the molecular shape with respect to a nitrogen

atom, measuring the longest distance between the nitrogen and any other atom in

the molecule:

EccentricityNi
= max

(
dNi−Atomj

)
(3.4)

Larger eccentricity values correspond to more elongated molecules, which are favor-

able for forming 2D perovskite layers.

3. Number of rotatable bonds (NumRot): This descriptor reflects the flexibility of the

ammonium group tethered to the nitrogen atom, calculated as the minimum distance

from the nitrogen to the nearest atom in the conjugated backbone:

Num_RotNi
= min

(
dNi−RingAtomj

)
(3.5)

A higher number of rotatable bonds improves flexibility, facilitating the anchoring

of the organic spacer to the inorganic framework.

4. N-N pair distance (DisNN ): This descriptor measures the spatial separation between

two nitrogen atoms in a molecule:

DisNi−Nj = 1(
dNi−Nj

)2 (3.6)

A smaller value indicates a larger distance, reducing repulsive interactions and en-

hancing structural stability in 2D perovskite layers.

All descriptors were computed from the distance matrix of organic spacers, which is ob-

tained using RDKit library in python. Briefly, all hydrogen-donor nitrogen atoms were
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identified in the distance matrix, and their corresponding descriptors were calculated using

the equation above.

A boundary-based approach was applied to screen out unsuitable organic spacers. Decision

boundaries were defined using the properties of known, successfully synthesized spacers

from the literature. Molecules failing to meet the criteria for any of the four descriptors

were excluded from further consideration. This systematic screening ensured that only

candidates with favourable synthetic accessibility and structural formability proceeded to

the subsequent stages of analysis.
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Chapter 4

High-Throughput Calculation and

Machine Learning Predictions

In this chapter, we describe the generation of hypothetical organic spacers and the sub-

sequent prediction of their properties using a combined high-throughput DFT approach

and machine learning techniques. Section 4.1 outlines the systematic expansion of the

organic spacer library through molecular morphing operations. Section 4.2 presents gen-

eral physical insights derived from high-throughput DFT calculations. Sections 4.3 and

4.4 discuss the selection and evaluation of machine learning models, highlighting their

predictive performance and their role in extracting structure-property relationships.

4.1 Molecular generation for chemical space expansion

4.1.1 Morphing operation

To systematically explore a broad and diverse chemical space, we employed a deterministic

molecular morphing approach rather than stochastic molecular generation methods[103],

[115]. This ensures controlled diversification while maintaining the chemical interpretabil-
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Figure 4.1: Scaffold tree plot illustrating the organic spacer generation process.
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ity of the generated spacers. As detailed in Chapter 3, each spacer is represented by a

12-digit fingerprint vector, which encodes key molecular features such as π-conjugation,

ammonium tethering, heteroatom substitution, and side-chain modifications. All the mor-

phing operators are associated with organic desciptors in the molecular fingerprint (Table

4.1). This approach enables the enumeration of structurally diverse yet chemically mean-

ingful molecular variations, ensuring a comprehensive and uniform coverage of the chemical

space.

We initiate the morphing process from PDMA (Generation 0, G0), a well-characterized

organic spacer[112]. We iteratively apply 13 distinct morphing operators to introduce

incremental modifications, systematically generating higher-order generations (G1 − G6).

The molecular generation process is illustrated in Figure 4.1. All organic spacers in G0

(centre core), G1(first circle) are displayed. For G2 (second and third circle), only represen-

tative structures with unique molecular fingerprints to maintain clarity. Experimentally

reported molecules within G0 − G2 are highlighted, while the inset table quantifies the

exponential expansion of the chemical space, which increases from an initial set of 21

reported organic spacers to millions of hypothetical spacers within G0 − G6.

Table 4.1: List of organic descriptors and their associated morphing operators.

Number Morphing operation Organic descriptor
1 Benzene-thiophene ring exchange five-membered ring
2 Ring linkage ring linkage
3 Ring fusion ring fusion
4 Primary secondary amine exchange number of primary amine
5 Linker length increase Linker length
6 Linker length decrease Linker length
7 Linker position change linker position
8 Hetero-nitrogen substitution hetero-nitrogen
9 Fluorination fluorination
10 Furan exchange furan
11 Pyrrole exchange pyrrole
12 Side chain on backbone no. side chain on backbone
13 Side chain on linker no. side chain on linker

The morphing operations yield progressively complex sets of organic spacers. For example,

to incorporate five-membered ring backbones, we utilize a ring contraction operator that
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4.1.2 Visualization of generated chemical space

transforms benzene into thiophene, thereby diversifying the core molecular framework.

This systematic expansion extends beyond commonly studied phenyl- and thiophene-

containing families, encompassing a broader spectrum of heteroatom-substituted struc-

tures (e.g., F, O, N) and various side-chain modifications.

The 21 experimentally reported organic spacers were captured within generations G0 −G6,

and with comparable complexity in these generations, we enumerated 21,306 fingerprints,

corresponding to 4,887,100 hypothetical organic spacers. To assess the chemical feasibility

of the generated molecules, the neutral forms of the hypothetical spacers were cross-

referenced against the PubChem database. Within generations G0 − G4, where computa-

tional feasibility allowed exhaustive searches, ∼ 103 spacers were identified in PubChem,

confirming that a subset of our generated structures aligns with known chemical com-

pounds. This validates the chemical plausibility of the generated molecular space.

4.1.2 Visualization of generated chemical space

To provide an intuitive understanding of the distribution and structural diversity of the

generated organic spacers, we employ a dimensionality reduction technique to visualize

the chemical space. Since the molecular fingerprints exist in a 12-dimensional space, we

utilize t-distributed stochastic neighbour embedding (t-SNE)[28], an unsupervised learning

algorithm that transforms high-dimensional data into a two-dimensional representation

while preserving the relative distances between structurally similar molecules.

The resulting t-SNE map is shown in Figure 4.2, representing ∼ 2×104 unique fingerprints

corresponding to ∼ 4 × 106 organic spacers across generations G0 − G6. Experimentally

reported spacers are highlighted, with representative molecules from G0 and G6 explicitly

labelled. The spatial organization of the t-SNE clusters reflects the underlying structural

similarities among different spacers: closely grouped molecules share similar fingerprint

features, while larger inter-cluster distances correspond to structurally dissimilar spacers.

Notably, among all reported spacers, the highest-generation example (G6), AE4T[97], is
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Figure 4.2: t-SNE representation of the generated chemical space containing the hypo-
thetical organic spacers.

distinctly separated from other spacers, reflecting its more complex structure. This visu-

alization demonstrates that our generative workflow comprehensively covers the chemical

space surrounding experimentally known spacers, including AE4T. Compared to tradi-

tional molecular datasets compiled from pre-existing databases, our approach ensures a

more uniform and representative sampling, avoiding biases toward extreme or rare struc-

tures. By maintaining a balanced distribution of generated molecules, we enable reliable

high-throughput calculations and robust machine learning predictions. As we will demon-

strate later in this chapter, this curated dataset serves as a reliable foundation for training

machine learning models, enhancing their ability to predict electronic properties with high

accuracy.

4.1.3 Descriptor-based visualization and cluster analysis

To further examine the relationships between molecular descriptors and structural similar-

ity, we present Figure 4.3, which depicts the same t-SNE map but color-coded according
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to different molecular descriptors derived from the fingerprint vector. This visualization

highlights key trends:

1. Molecular spacers with similar descriptors cluster together, confirming that the fin-

gerprint representation effectively captures structural relationships.

2. The non-linear characteristic of t-SNE is well observed and it makes it easier to un-

derstand how t-SNE work. Note that the non-linearity organization of data points

reflects the fundamental difference between t-SNE and principal component analysis

(PCA). While PCA, a linear dimensionality reduction technique, is widely used in

materials informatics, we found that it resulted in excessive overlap between struc-

turally distinct molecules. By contrast, t-SNE preserves local structures more effec-

tively, providing better differentiation of organic spacers.

A deeper analysis of specific clusters within the t-SNE map is presented in Figure 4.4,

focusing on the existing organic spacers. The full distribution of the generated organic

spacers is shown in Figure 4.4a. A clear gradient is observed from left to right, reflecting

increasing number of aromatic rings. Spacers such as PDMA and ThDMA, which contain

a single aromatic ring and are widely used in 2D perovskites, cluster on the left side of the

plot. On the other hand, highly conjugated organic spacers, such as the oligothiophene-

based spacers (AE2T, AE3T, AE4T) are found progressively further to the right.

Figure 4.4 b,c provide focused views of subspaces containing spacers with a single aromatic

ring. In b, molecules are colored by ring type, highlighting distinct clustering between

five-membered ring and six-membered ring as conjugated backbones. In c, the same subset

is colored by linker length. A spatial gradient is visible, with shorter linkers (e.g., PDA,

linker length = 0) clustering in the top and longer linkers (e.g., PDEA, linker length

= 4) spreading toward the bottom. This demonstrates that the fingerprint-based t-SNE

projection effectively captures meaningful structural and functional diversity among known

spacers.
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4.2 Influence of organic spacer structure on energy levels

4.2.1 DFT calculation of DJ perovskites

To assess the impact of organic spacer selection on the electronic properties of DJ per-

ovskites, we performed a detailed high-throughput DFT analysis on 261 DJ-phase per-

ovskites. This dataset includes both experimentally reported spacers and hypothetical

spacers from generations G0 − G2 of our expanded chemical space. Model crystal struc-

tures were constructed by inserting organic spacers between the PbI4 layers, with each

unit cell containing four diammonium spacers and four PbI4 units (see Chapter 3 for

computational details).

Organic spacer packing configurations

In computational studies of DJ perovskites, two primary packing arrangements of organic

spacers are typically assumed: in-phase and out-of-phase configurations. Unlike the in-

organic sublattice, which undergoes significant structural distortions (such as octahedral

tilting and bond-angle variations), the organic spacers exhibit minimal changes in packing

pattern upon structural relaxation. This behaviour suggests that interactions between

organic spacers and the inorganic layers, as well as interactions among the organic spacers

themselves, are relatively weak, occurring primarily through hydrogen bonding and van

der Waals interactions. Consequently, both in-phase and out-of-phase arrangements lead

to well-converged structures, indicating that the energy difference between these config-

urations is small. This suggests a shallow energy landscape with respect to the relative

alignment of organic spacers.

Despite the energetic similarity between different packing arrangements, our analysis re-

vealed that the packing configuration has minimal influence on the energy level alignment.

Therefore, to align with experimentally observed structures, all organic spacers were assign

to arranged in herringbone (out-of-phase) configurations[110]. The optimized geometries

were computed at the DFT-PBE level.
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Bandgap calibration and energy level alignment

The energy level alignment between the organic frontier molecular orbitals and the inor-

ganic band edges was subsequently determined using HSE + SOC calculations. A key

parameter influencing the computed bandgap values is the mixing factor, which defines

the fraction of exact exchange in the hybrid functional. Previous studies on 2D perovskites

have used mixing factors ranging from 0.25 to 0.45 to match experimental bandgaps. Our

calculations confirm that while the choice of mixing factor significantly alters absolute

bandgap values, its impact on energy level alignment trends is minimal, as both organic

and inorganic components exhibit a similar response to changes in the mixing factor.

To ensure consistency with experimental data, we benchmarked our DFT results against

available experimental bandgap values, finding that a mixing factor of 0.4 provided the

best agreement (see Chapter 3 for further discussion).

Energy level trends in DJ perovskites

Our analysis revealed that the majority of DJ perovskites (18 out of 21 experimentally

reported structures) exhibit type Ia energy level alignment, characterized by low-energy

electrons and holes localized in inorganic layers. The remaining three structures exhibit

type IIa alignment. The primary factor dictating this variation in energy level alignment

is the frontier molecular orbitals levels of the organic spacers, which exhibit a broad energy

variation of ∼ 6.1 eV. In contrast, the inorganic band edges remain relatively invariant,

with a variation of only ∼ 0.9 eV (see Figure 4.5). This observation aligns with the common

approximation cited in the literature that inorganic energy levels of 2D perovskites can be

assumed unchanged with different organic spacers[9], [72].

Furthermore, Figure 4.5 illustrates how our expanded chemical space exploration has sig-

nificantly extended the range of organic frontier levels compared to previous studies. The

generated DJ perovskites—including G0 − G2 and inverse designed final candidates (in-

troduced later in Chapter 5)—exhibit an expanded energy distribution of organic frontier

levels, covering a much wider range than the reported organic spacers, underscoring the

effectiveness of our chemical space exploration approach.
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4.2.2 Four factors governing energy level alignment
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Figure 4.6: Four factors affecting the energy level alignment in DJ perovskites.

To further understand the structure-property relationships governing energy level align-

ment in DJ perovskites, we analysed key electronic band structure trends across all struc-

tures studied. Four dominant factors were identified, as illustrated in Figure 4.6:

(i) Energy gap at the inorganic band edge (Γ point)

(ii) Inorganic band dispersion along the stacking direction (Γ to Z)

(iii) Energy gap between the organic frontier orbitals (HOMO-LUMO levels)

(iii) Frontier orbital dispersion of the organic spacers

Electronic structure of inorganic component

The inorganic layers in DJ perovskites typically form direct bandgap semiconductors with

their valence band maximum (VBM) and conduction band minimum (CBM) located at

the Γ point in the Brillouin zone. However, in cases where interlayer coupling is significant,

the bandgap shifts to the Z point.

The band dispersion is strongly anisotropic, exhibiting strong dispersion in the Γ − X/Y

direction (in-plane directions in real space), while the dispersion in the Γ − Z direction
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Figure 4.7: Energy level alignment in calculated DJ perovskites plotted against interlayer
distance.

(stacking direction) depends on interlayer interactions. This trend of interlayer interaction

is illustrated in Figure 4.7, where the energy level alignment is plotted against the interlayer

distance. Interlayer coupling, characterized by the energy difference between the Γ and Z

point of the inorganic band edge, becomes significant only when the interlayer distance is

relatively small.

To further quantify the structure-property relationship between inorganic framework ge-

ometry and energy levels, we examined two key structural factors (Figure 4.8):

• Factor (i) in Figure 4.6 is mainly affected by octahedral tilting and distortion. As

shown in Figure 4.8a, variations in the Pb-I-Pb bond angle and I-Pb-I internal

distortion significantly impact the inorganic energy gap at the Γ point, leading to

energy shifts of approximately 1 eV. These distortions arise due to hydrogen bonding

interactions between the PbI6 octahedra and the organic cations.

• Factor (ii) in Figure 4.6 is mainly affected by interlayer distance. As shown in Figure
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Figure 4.8: Indirect influence of organic spacers on inorganic band edges.

4.8b, when the interlayer distance decreases below 5.0 Å, iodide-iodide interactions

enhance Γ − Z energy dispersion, also inducing ∼1 eV energy shifts. This behaviour

is commonly observed in DJ-phase perovskites with short organic spacers and is

consistent with trends reported in ACI-phase perovskites[63], [79].

Electronic structure of the organic component

Unlike the band-like behaviour of the inorganic layers, the organic frontier orbitals (HOMO

and LUMO) remain localized and discrete, with minimal dispersion, closely resembling

their isolated molecular forms. This occurs because:

• There is not interlayer interaction between organic spacers in adjacent layers, result-

ing in zero dispersion along the Γ − Z direction.

• The in-plane (Γ − X/Y ) dispersion is also minimal due to the herringbone packing

of organic spacers, which restricts electronic interactions between adjacent organic

units. More detailed discussions on the relationship between packing pattern and

in-plane dispersion can be found in Chapter 3.
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4.2.3 Simplified modelling of organic frontier levels

Our analysis confirms that the primary influence of organic spacers on DJ perovskite

energy levels lies in their HOMO and LUMO levels, which is primarily a consequence of

weak bonding interactions between organic cations and the inorganic framework[6], [81].

However, the high computational cost of DFT calculations for large DJ perovskite unit

cells limits our ability to simulate thousands of structures. To address this, we propose

an efficient approximation: Organic frontier energy levels in hybrid perovskites can be

estimated using calculations on isolated cations.

We computed frontier levels of isolated organic spacers using the B3LYP functional in

Gaussian. Figure 4.9 compares the frontier orbital energies obtained from hybrid per-

ovskite calculations and isolated organic cations. While absolute energy values differ

because of functional choices, basis sets, and the chemical environment, a near-linear re-

lationship emerges between the two calculations:

• Figure 4.9a shows that HOMO levels exhibit a linear correlation between hybrid

perovskites and their isolated cation counterparts.

• Figure 4.9b highlights a similar trend in LUMO levels, with noticeable dependence

on the ring count of the organic spacer.

• Figure 4.9c indicates that indicates that the HOMO–LUMO gap remains consistent

between the two methods.

By leveraging these correlations, we can predict organic frontier levels without the need

for fully relaxed DJ perovskite calculations for each candidate spacer. This significantly

reduces the computational cost, enabling us to scale from hundreds to thousands of hy-

pothetical structures—an essential step for generating robust datasets to train machine

learning models in the subsequent sections.
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Figure 4.9: Correlation between organic frontier levels in hybrid perovskites and their
isolated molecular forms.
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4.3 Selection and evaluation of machine learning models

In the previous sections, we established how organic spacers affect the energy level align-

ment in DJ perovskites, and we identified key structural descriptors that can serve as input

features for predictive modelling. Here, we describe how ML is employed to capture the

structure–property relationships between molecular fingerprints and their frontier energy

levels, and facilitate the rapid identification of promising spacer candidates.

4.3.1 Molecular fingerprint as input feature
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Figure 4.10: Correlation matrix of organic descriptors in the molecular fingerprint.
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To represent each organic spacer, we use a 12-digit molecular fingerprint as the input

feature for our machine learning pipeline. This fingerprint does not require additional

feature selection, as it was specifically designed to minimize redundancy among descriptors.

Indeed, Pearson’s correlation coefficients between fingerprint descriptors are all below

0.5 (see Figure 4.10), confirming low inter-feature correlation and justifying the direct

inclusion of all 12 features in model training. This is a significant advantage compared to

previous studies that rely on diverse chemical descriptors and require feature selection to

reduce multicollinearity[7], [8].

Our machine learning dataset consists of 3,239 organic spacers spanning generations G0 −

G3, with HOMO/LUMO values from high-throughput calculations serving as the target

properties. This dataset allows us to explore a broad range of structures and electronic

characteristics, setting the stage for robust model training.

4.3.2 Comparison of different models

Because our goal is to predict HOMO and LUMO energies from known labels (i.e., com-

puted frontier levels), this is a supervised regression problem. We trained separate machine

learning models for HOMO and LUMO predictions respectively, with the dataset split into

training and testing sets (80: 20 ratios). All models were evaluated using 15-fold cross-

validation to ensure consistent and reliable estimation of fitting error. A variety of linear

and non-linear regression methods commonly used in materials science literature were

benchmarked, including:

• Linear models: linear regression, LASSO regression, Ridge regression, Elastic net

regression, Support vector regression with a linear kernel.

• Non-linear models: Random Forest, K nearest neighbour, Support Vector Regression

with radial basis function (rbf) kernel or polynomial kernel.

Figure 4.11 summarizes the R2 scores (ranging from 0 to 1, with higher values indicating

better predictions) for each model. Across both HOMO and LUMO predictions, nonlinear
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models achieve slightly higher R2 scores (around 0.99/0.97) than linear models (around

0.95/0.95). Notably, no overfitting was detected, as evidenced by comparable performance

on both training and test sets (Figure 4.12).

Despite their slightly lower performance for low-energy frontier levels, linear models cap-

ture the overall trend effectively. This difference becomes clearer in Figure 4.13 (HOMO)

and Figure 4.14 (LUMO), which plot predicted vs. true energy values alongside model

scores and root mean squared errors (RMSE). While nonlinear models better capture the

extreme regions of energy, linear models show no significant deviations from the overall

relationship.

Since our primary objective was to classify energy level alignment types (e.g., Type Ia,

Type IIa, etc.) rather than predict absolute HOMO/LUMO values, a slight accuracy

gap at the extremes is not critical. By optimizing the decision boundary, linear models

can serve as a highly interpretable alternative without a significant loss in performance.

Consequently, linear models are chosen for subsequent analysis and feature interpretation.

4.4 Interpretation of structure-property relationships

In this section, we explore various approaches to interpreting the machine learning model.

We demonstrate how different model interpretation methods can yield slightly different

feature importance rankings while still preserving the same underlying physical meaning.

4.4.1 Feature coefficient

In many traditional machine learning approaches—especially linear models—the model

parameters (often referred to as coefficients or weights) provide a direct way to interpret

how each input feature influences the predicted outcome. In our case, these coefficients

offer insight into how various organic descriptors (encoded in the 12-digit fingerprint) affect

the HOMO/LUMO energy levels of the organic spacers.
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Figure 4.13: Predicted vs. true values for HOMO level across various ML models.
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4.4.1 Feature coefficient

Figure 4.14: Predicted vs. true values for LUMO level across various ML models.
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Since our data undergo feature normalization (standardization) before training, two types

of coefficients are relevant: normalized feature coefficient (directly reported by the trained

model), and unnormalized feature coefficient (raw coefficient rescaled to the original units).

Normalized feature coefficient

During model training, each descriptor is standardized by subtracting its mean and divid-

ing by its standard deviation. As a result, the coefficients reported by the model reflect

the effect of a one-standard-deviation change in a descriptor on the predicted HOMO

or LUMO. Larger absolute coefficients indicate greater importance, while the sign (posi-

tive/negative) denotes whether the feature increases or decreases the predicted value.

Figure 4.15: Normalized feature coefficients of linear ML models used in this work.

Figure 4.15 compares the normalized feature coefficients from various linear models—including

Linear Regression, LASSO, Ridge, Elastic Net, and Linear SVR. All models yield similar

coefficients, suggesting that regularization (L1, L2, or a combination) does not drasti-

cally alter the identification of the most influential features. Moreover, the consistency in

coefficients across models indicates minimal overfitting.

In general, features related to the conjugated backbone (e.g., no. rings) and tethering

ammonium groups (e.g., no. primary ammonium) strongly influence both HOMO and
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LUMO predictions. Notably, most features affect HOMO and LUMO in a comparable

manner, implying that variations in the HOMO–LUMO gap primarily arise from a few

key descriptors. For HOMO, all features except “no. pyridine-type nitrogens” contribute

positively, with number of rings exerting the largest effect. For LUMO, pyridine-type

nitrogen and fluorine substitution exert negative contributions, whereas number of rings

plays a slightly smaller role compared to HOMO.

Given its L1 regularization, LASSO provides a convenient means of highlighting key fea-

tures by favouring sparse solutions. Therefore, LASSO regression serves as our represen-

tative linear model for subsequent interpretation and prediction, although the insights

remain applicable to all linear models.

Unnormalized feature coefficient

While normalized coefficients gauge the effect of a one-standard-deviation change, the

unnormalized coefficients express how a one-unit increase in each descriptor affects the

HOMO or LUMO in real (eV) units. Consequently, unnormalized coefficients are often

more intuitive in a materials science context, where absolute energy shifts matter.

As an example, the LASSO-based HOMO predictor can be written as:

HOMO = 1.33 x1 + 0.61 x2 + 0.05 x3 + 1.33 x4 + 0.52 x5 + 0.18 x6 − 0.30 x7 + 0.00 x8

+ 0.06 x9 + 0.44 x10 + 0.11 x11 + 0.24 x12 − 19.25

(4.1)

Here, x1 . . . x12 represent the 12 molecular descriptors, and the coefficients specify how

changes in each descriptor shift the predicted HOMO (in eV). Notably, x1 and x4—which

corresponded to no. rings and no. primary ammonium groups—dominate, indicating their

strong contribution to the HOMO level.

A similar expression applies to LUMO, and Figure 4.16 visualizes the absolute values of

the unnormalized coefficient for both HOMO and LUMO in radar plot. Overall, nor-
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Figure 4.16: Unnormalized feature coefficients (absolute value) from Lasso regression
model.

malized and unnormalized coefficients are consistent; however, descriptors with broader

numerical ranges (e.g., number of rings, which varies from 1 to 4) show relatively smaller

unnormalized coefficients, whereas features with narrow ranges (e.g., number of primary

ammonium groups, which varies from 1 to 2) appear more prominent.

Despite these differences, the physical insights remain the same: conjugation (number of

rings) and tethering ammonium groups play crucial roles in frontier orbital energies. The

next subsection delves into a comprehensive interpretation of how each feature influences

HOMO/LUMO levels.

4.4.2 SHAP value analysis

SHAP (SHapley Additive exPlanations) is a popular method for explaining the output of

complex machine learning models. At its core, SHAP leverages concepts from cooperative

game theory—specifically Shapley values—to attribute the contribution of each feature to

a model’s prediction. To further interpret how individual features influence predictions, we

employ SHAP analysis, which assigns each descriptor a contribution (positive or negative)

to the final HOMO or LUMO prediction.

Instead of using the average predicted value (the default SHAP baseline), we use the pre-
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dicted value of G0 molecule, PDMA, as reference molecule. This makes the SHAP values

more physically meaningful because each feature’s contribution is interpreted relative to

the G0 molecule rather than to a broad average. Concretely, for each data sample, our

model produces 12 SHAP values (one per feature). Summing all 12 SHAP values plus the

baseline prediction (the prediction for G0) typically yields the model’s actual prediction

for that sample.

Global feature importance

Figure 4.17 shows a SHAP summary plot (i.e., beeswarm plot), which provides a global

view of feature importance and how each feature’s impact varies across samples. The 12

features appear on the y-axis in order of their overall influence, with the most impactful

features at the top. Each dot in a row represents a SHAP value for one data point, and

the x-axis indicates the magnitude and direction of the feature’s contribution (left for a

negative shift from G0, right for a positive shift). Because most features (e.g., no. rings)

take discrete values, their SHAP values often cluster in distinct groups rather than forming

a continuous distribution. A wider spread of SHAP values in a feature’s row means that

feature has a more variable effect across different molecules. For example, “number of

rings” can shift the predicted HOMO by as much as 4 eV relative to G0.

The summary plot highlights the influence of key features. Consistent with our analysis of

feature coefficient in previous subsection, the features related to the conjugated backbone

and tethering ammonium groups being the most significant. Among these, the number of

aromatic rings in the conjugated backbone emerges as a critical factor, directly influencing

the degree of conjugation—a well-established design rule in organic semiconductors[116]

that has also found application in 2D perovskites[9], [72]. In addition to conjugation,

the analysis underscores the significance of electron richness, another foundational prin-

ciple in the design of organic semiconductors[116]. For tethering ammonium groups, the

electron-rich alkyl groups associated with primary ammonium can raise the frontier levels

by increasing the linker length or the number of primary ammonium groups. The effect

of heteroatom substitution varies depending on the electronic nature of the substituent.

For example, pyridine-type nitrogen, being electron-withdrawing, lowers both HOMO and
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Figure 4.17: SHAP value analysis of HOMO and LUMO predictor.
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LUMO, while pyrrole-type nitrogen, being electron-donating, raises both levels. Inter-

estingly, fluorination—widely used to enhance stability in 2D perovskite spacers due to

the large dipole moment induced by its electron-withdrawing ability[114], [117]—showed

a relatively minor influence on the frontier levels in this study. This limited effect may

stem from fluorine substitution not directly participating in the conjugated π-system.

While highly electronegative, fluorine’s influence remains localized, resulting in minimal

perturbation to the frontier orbitals.

Compared to feature coefficient discussed in previous section, the linker length emerges as

the most influential factor in LUMO prediction. This is because all the data is calibrated

by baseline value of G0 molecules, instead of the mean value. This shows that change in

linker length can produce the largest deviation from LUMO of G0 molecule.

Individual feature importance of representative molecule

After examining the global summary, we now present visualizations of SHAP values for

individual samples. This is achieved using waterfall plots, which decompose a single predic-

tion into its component feature contributions, illustrating how each feature influences the

model’s output above or below the baseline (which, in this case, is the G0 molecule). Two

categories of organic spacers are analyzed below, molecules with relatively high HOMO,

and molecules with relatively low LUMO.

Figure 4.18 presents SHAP value analysis for four organic spacers with relatively high

HOMO levels, which are later validated to achieve Type IIa alignment. The SHAP values

are calibrated using the G0 molecule as a baseline (horizontal axis on the left, where

HOMO = -13.998 eV). Each feature’s SHAP value is represented by a bar extending to

the right (positive contribution, colored in pink) or to the left (negative contribution,

colored in blue). The bars are arranged in order of their magnitude of impact, allowing

for a visual step-by-step decomposition from the baseline to the final predicted value.

The primary driving factors for a higher HOMO level vary across molecules. For instance,

in the first molecule, the most significant contributor is the number of rings, followed by
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Figure 4.18: SHAP value analysis of representative organic spacers in type IIa.
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the percentage of ring linkage. In the third molecule, the linker length is the dominant

feature, followed by the number of rings.

Figure 4.19 illustrates the SHAP analysis of eight organic spacers predicted to achieve

Type IIb alignment, characterized by relatively low LUMO levels.

The results indicate that the most significant factor driving a lower LUMO level across

these molecules is the reduction in the number of primary ammonium groups.

These findings demonstrate the predictive capability of the interpretable machine learning

model, which allows for the estimation of organic frontier energy levels—and by extension,

the energy level alignment of DJ perovskites—for any organic spacer given its fingerprint

representation. This capability accelerates the discovery process by enabling the rapid

identification of promising candidates with targeted energy level alignment types.

4.5 Chapter summary

This chapter presented a combined high-throughput DFT and machine learning workflow

for exploring the chemical space of organic spacers in 2D perovskites. We first generated

a diverse library of hypothetical organic cations through systematic morphing operations.

High-throughput DFT calculations were then performed to evaluate key physical prop-

erties across this expanded chemical space. Machine learning models were trained and

benchmarked, achieving high predictive accuracy. Importantly, these models enabled rapid

property prediction for large molecular sets and revealed meaningful structure–property

relationships. The outcomes from this chapter establish a robust foundation for the inverse

design and screening of novel spacer candidates in the following chapters.

93



CHAPTER 4. HIGH-THROUGHPUT CALCULATION AND MACHINE LEARNING
PREDICTIONS

no. primary ammonium

no. N (pyridine)

no. rings

% ring linkage

8 other features

1 =

1 =

1 =

0 =

LUMObase = - 8.247 eV

= - 10.488 eVLUMOpred

no. primary ammonium

no. N (pyridine)

no. rings

% 6-membered rings

8 other features

1 =

1 =

1 =

0 =

LUMObase = - 8.247 eV

= - 10.594 eVLUMOpred

no. primary ammonium

no. N (pyridine)

no. rings

ammonium position

8 other features

1 =

1 =

1 =

2/3 =

LUMObase = - 8.247 eV

= - 10.475 eVLUMOpred

no. primary ammonium

no. N (pyridine)

no. O (furan)

% 6-membered rings

8 other features

1 =

1 =

1 =

0 =

LUMObase = - 8.247 eV

= - 10.575 eVLUMOpred

N
NH

OH3N

NH

N
H3N

NH

NH3N

N
NH

SH3N

N

NH

SH3N

N

NHH3N

N

NHH3N

N

NH

OH3N

Figure 4.19: SHAP value analysis of representative organic spacers in type IIb.
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Chapter 5

Synthesis Feasibility Screening

and Final Candidate Validation

One of the fundamental challenges in AI-assisted materials discovery is ensuring that com-

putationally predicted materials are experimentally realizable. Section 5.1 introduces a

two-step screening approach designed to evaluate the practical synthesis feasibility of 2D

perovskites. Sections 5.2 present the inverse design of final candidates, integrating both

targeted energy level alignment and synthesis feasibility constraints to identify experimen-

tally viable DJ-phase perovskites.

5.1 Synthesis feasibility screening

5.1.1 Rationale and challenges

Synthesis feasibility is a key bottleneck in AI-assisted materials discovery, acting as the

bridge between theoretical predictions and experimental realization[118], [119]. While

previous studies have investigated the synthetic feasibility of RP perovskites[7], [8], no

systematic approaches have been applied to DJ perovskites. This lack of established
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protocols arises due to two main challenges:

1. Limited exploration of diammonium spacers: Unlike RP perovskites, which utilize a

wide range of monoammonium cations, DJ perovskites require diammonium cations,

whose synthetic pathways remain relatively underexplored.

2. Scarcity of negative data: The absence of well-documented failed synthesis attempts

(e.g., cases forming 1D or 0D phases instead of 2D structures) makes it difficult to

train predictive models using traditional machine learning approaches[99], [120].

Figure 5.1: Summary of synthesis feasibility screening result.

To address this challenge, we developed a two-step computational screening approach,

mimicking the experimentalist’s approach to 2D perovskite synthesis:

Step 1: Synthetic accessibility of organic spacers—determines whether the generated or-

ganic spacers are practically synthesizable using established chemical routes.

Step 2: Formability of 2D DJ perovskite structures—evaluate whether a given organic

spacer is likely to form a stable 2D DJ perovskite phase rather than collapsing into 1D or

0D structures.
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This workflow is illustrated in Figure 5.1, with screening results shown for generations

G0 − G4. The following subsections provide detailed analyses of each screening step.

5.1.2 Step 1: Synthetic accessibility of organic spacers

Using PubChem as a proxy for practical synthesizability

Figure 5.2: Number of generated organic spacers vs. existing spacers in G0-G4.

Rather than calculating a theoretical synthesis feasibility score, which is common in or-

ganic chemistry, we use PubChem presence as a proxy for practical synthesizability. This

approach is well-established in 2D perovskite literature[7], as molecules listed in PubChem

are generally commercially available or synthetically documented.

In our expanded chemical space (G0-G4), we find that 4.9% of generated spacers are

present in PubChem. The fraction of synthesizable molecules decreases progressively from

G0 to G4 (Figure 5.2), reflecting the increasing structural complexity of higher-generation

molecules. This trend is expected since earlier generation spacers are structurally simpler

and more likely to resemble known compounds, while higher-generation spacers, derived

through iterative molecular morphing, tend to be chemically novel.

Synthetic accessibility across energy level alignment types

97



CHAPTER 5. SYNTHESIS FEASIBILITY SCREENING AND FINAL CANDIDATE
VALIDATION

To determine whether synthesis feasibility is correlated with the energy level alignment

type, we analysed the PubChem presence of spacers in G0−G4 with different ML-predicted

energy level alignments:

• Type Ib spacers present the greatest synthetic challenges, as none of them are found

in PubChem.

• Type IIa spacers are also rare, with only 0.1% appearing in PubChem.

• Type IIb spacers are the most readily accessible, with 17.5% present in PubChem.

These findings suggest that certain energy alignment types are inherently more difficult

to synthesize, posing additional challenges in the inverse design process.

Structural factors affecting synthetic accessibility

To further understand why certain molecular structures are more synthetically accessible,

we trained a classification model to predict whether a given organic spacer appears in

PubChem. This model follows a logistic regression framework, where:

• Input Features: Molecular fingerprint descriptors.

• Target Property: Binary classification (exists in PubChem = 1, not in PubChem =

0).

We present the key performance metrics of the logistic regression model in Figure 5.3.

The confusion matrix (Figure 5.3a) compares the model’s predictions with the actual

labels, showing an overall accuracy of 93%, meaning that 93% of the total predictions

were correct.

To further evaluate the model’s discriminative ability, we examine the Receiver Operating

Characteristic (ROC) curve (Figure 5.3b) and its corresponding Area Under the Curve

(AUC) score. In general, a model with no discriminative power (random guessing) pro-

duces a diagonal ROC curve from (0,0) to (1,1), with an AUC of 0.5. In contrast, a perfect
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classifier would have a curve that rises sharply to (0,1) and extends to (1,1), corresponding

to an AUC of 1.0. Our model achieves an AUC of 0.96, with the ROC curve closely ap-

proaching the top-left corner, indicating strong predictive performance and a high degree

of reliability in capturing the relationship between molecular fingerprints and synthesis

feasibility.

Using SHAP value analysis, we identified key molecular features that influence synthetic

accessibility (Figure 5.3c). The most significant descriptors include:

• Number of aromatic rings: Molecules with more rings are generally less likely to be

found in PubChem;

• Side-chain modifications: Certain branched or bulky substituents reduce synthetic

accessibility;

• Heteroatom substitutions, especially fluorination and pyridine type nitrogen nega-

tively impact synthesizability.

These findings suggest that molecular complexity—particularly higher ring counts, side

chains and heteroatom substitution—tends to reduce synthetic feasibility. This aligns

with general organic synthesis trends, where molecules with multiple fused rings and elec-

tronegative substitutions are often more difficult to synthesize.

By integrating PubChem data into our feasibility screening, we ensure that our selected

candidates remain practically synthesizable. Although most of the identified G0 − G4

spacers have not yet been explored for 2D perovskites, their presence in PubChem sug-

gests that their chemical synthesis pathways are well established, making them promising

candidates for experimental validation.

5.1.3 Step 2: 2D structure formability analysis

Following the synthetic accessibility screening, the next step evaluates the formability of

2D DJ perovskite structures. A key determinant of perovskite formability is the hydrogen-

100



5.1.3 Step 2: 2D structure formability analysis

bonding interaction between the organic spacer and the inorganic framework. It has been

established in the field of 2D perovskite that hydrogen bonding plays a crucial role in

stabilizing 2D perovskite structures.

Hydrogen bonding as a formability criterion

To establish hydrogen bonding potential, we examine the interaction between donor and

acceptor atoms. For a hydrogen bond to form, two conditions must be met:

1. A hydrogen donor atom – A hydrogen atom covalently bonded to an electronegative

element (e.g., nitrogen in ammonium groups).

2. A hydrogen acceptor atom – A highly electronegative element, capable of accepting

a hydrogen bond (e.g., halide anions (I-, Br-, Cl-) in the perovskite framework).

In 2D perovskites, the halide atoms in the inorganic layers serve as hydrogen acceptors,

while hydrogen-donor groups originate from the organic spacers, typically from nitrogen

atom. However, not all nitrogen atoms in organic spacers are capable of forming hydrogen

bonds.

Figure 5.4 categorizes the four nitrogen types present in the organic spacers examined in

this study. Among these, only three can act as hydrogen donors:

(1) Primary ammonium (−NH3
+)

(2) Protonated pyridine-type nitrogen (−NH+−)

(3) Pyrrole-type nitrogen (−NH−)

Conversely, unprotonated pyridine-type nitrogen (−N−) cannot serve as a hydrogen donor,

as it lacks a covalently bonded hydrogen.

A few representative organic spacers containing these nitrogen types are illustrated in

Figure 5.4. For instance, in the last example, the molecule contains two pyridine-type

nitrogen atoms. In its neutral form, both nitrogen atoms are equivalent, with no hydrogen
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bonding capability due to the absence of a covalently bonded hydrogen. However, in its

charged form, if one of the nitrogen atoms becomes protonated, the additional hydrogen

enables hydrogen bond formation with the inorganic framework, thereby influencing 2D

structure formability.

To ensure accurate descriptor selection, our formability analysis exclusively considers

hydrogen-donor nitrogen atoms while excluding non-donor types (e.g., unprotonated pyridine-

type nitrogen).

Formability descriptors

The ability of a hydrogen-donor nitrogen to form a hydrogen bond depends not only on its

presence but also on whether it can reach the inorganic framework’s halide atoms. This

interaction is influenced by the topological and steric properties of the organic spacer. To

quantify these effects, we adopt four key formability descriptors, previously established in

RP perovskite formability studies[7], [100].

• steric hindrance index (STEI) – measures spatial constraints around the hydrogen

donor.

• eccentricity – evaluates molecular shape (ratio between height and width)

• nitrogen-nitrogen pair distance (DisNN )—Assess the spatial separation of tethering

ammonium groups.

• the number of rotatable bonds in the spacer’s tail—Reflects molecular flexibility,

influencing hydrogen bond formation.

Each descriptor is computed using distance matrix calculations and is anchored to one or

more nitrogen atoms (Figure 5.5). Among them, DisNN evaluates two nitrogen atoms,

whereas the other three descriptors focus on a single nitrogen centre.

Formability decision framework
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Figure 5.5: Calculation of formability descriptors for organic spacers.

To access the formability of our hypothetical organic spacers, we employed a boundary-

based approach, defining thresholds for each descriptor based on their physical interpre-

tation and experimental reported positive data.

Since prior studies suggest a linear relationship between formability and these descriptors,

threshold values are determined based on the minimum or maximum range observed in

experimentally validated spacers. For example, in the case of STEI, previous studies and

organic chemistry principles suggest that higher steric hindrance impedes 2D perovskite

formation. Thus, we set an upper limit for STEI to define formability boundaries.

For an organic spacer to be classified as formable, it must satisfy the boundary conditions

for all four formability descriptors. Compared to machine learning classification methods

commonly used in similar studies, our method addresses the unique challenge for DJ per-

ovskites: the limitation of highly imbalanced dataset (dominated by positive data) and

high correlations among descriptors which can lead to multicollinearity and reduced model
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Figure 5.6: Calculation of formability descriptors for organic spacers.

accuracy. As shown by the Pearson correlation analysis of formability descriptors in Fig-

ure 5.6, the four formability descriptors exhibit strong correlations with each other (above

0.7 for multiple descriptors), limiting their independent utility in machine learning mod-

els. Our approach applies stricter, more interpretable criteria by evaluating descriptors

individually rather than collectively, enhancing its robustness for formability prediction.

Formability screening result

Applying the formability criteria to generations G0 − G4, we find that 7.4% of organic

spacers fail the screening (Figure 5.1). However, the impact varies across energy level

alignment types:

• Type IIb spacers are the most affected (74% excluded).

• Type Ib and Type IIa spacers are largely unaffected, with no exclusions.

The influence of the four formability descriptors on final screening decisions is also unevenly

distributed. Among them, STEI exhibits the strongest impact on formability constraints.

A closer examination reveals that STEI alone accounts for 68.1% of exclusions among

Type IIb spacers (Figure 5.7). This suggests that steric effects play a dominant role in

restricting the formability of these organic spacers, further reinforcing the importance of

spatial accessibility in hydrogen bonding interactions within 2D DJ perovskite structures.
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To better understand the relationship between descriptors and formability decisions, Fig-

ure 5.8a presents a Pearson correlation analysis between the decision of individual descrip-

tors and the final decision. The near-perfect correlation (close to 1.0) between STEI and

formability confirms steric hindrance as the most critical determinant.

Additionally, Figure 5.8b provides a Venn diagram illustrating the overlap between the

decision among the four descriptors. The shared area among all four descriptors represents

the organic spacers that satisfy the final formability decision criteria. Non-overlapping

areas indicate that each formability descriptor serves a slightly different role in screening

candidates. The largest number of candidates outside the STEI circle underscores that

STEI is the most effective screening descriptor.

Relationship between fingerprint and formability screening

To further investigate the structural factors influencing 2D perovskite formability, we

analysed the relationship between molecular fingerprints and formability decisions. As

shown in Figure 5.9, Pearson’s correlation coefficient reveals that key structural features

affecting formability include linker length and the number of primary ammonium groups.
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Figure 5.9: Correlation between formability descriptor decision and molecular fingerprint.

This align with established understanding in this field[6], emphasizing that the tethering

ammonium group plays a crucial role in the formation of 2D perovskite structure.

The influence of the tethering ammonium group is primarily exerted through its impact

on the STEI, which determines whether the ammonium donor can effectively engage in

hydrogen bonding with the inorganic framework. This effect explains why Type IIb spacers

are disproportionately affected by formability screening—compared to Type IIa and Type

Ib spacers, Type IIb spacers exhibit shorter linker lengths and fewer primary ammonium

groups, leading to increased steric hindrance and reduced hydrogen bonding potential.

Although our analysis confirms that the tethering ammonium group is the dominant factor

in formability, we also observe weaker correlations between formability and other struc-

tural descriptors. To explore these additional dependencies, we analysed representative

groups of organic spacers to illustrate that formability is governed by complex interactions

between multiple structural variables.

As shown in Figure 5.10, formability in this set of organic spacers is determined by a

combination of factors: tethering ammonium position, linker length, number of primary

ammoniums, and the percentage of six-membered rings.
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Among these descriptors, the rotatable bond in the tail descriptor is primarily influenced

by linker length, particularly when there is a single primary ammonium, and the linker

length is zero. In contrast, STEI involves a more complex interplay of factors, including

the number of primary ammoniums, linker length, and ammonium position. While steric

hindrance is often associated with the number of primary ammoniums, our findings reveal

that this factor alone is insufficient to disqualify an organic spacer. Instead, the spatial en-

vironment of secondary ammoniums, particularly the position of the tethering ammonium

on the ring, is a key determinant of the STEI boundary.

Figure 5.10: Examination of similar organic spacers near the formability decision bound-
ary.
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5.1.4 Synthesis feasibility screening summary

Our synthesis feasibility screening reveals distinct synthesis feasibility challenges for DJ

perovskites with type Ib, IIa, and IIb alignments. For type Ib and IIa organic spacers, the

primary bottleneck lies in their synthetic accessibility, whereas for type IIb spacers, the

main challenge is achieving the formability of the 2D structure.

While this two-step screening process effectively narrows the range of DJ perovskite can-

didates, limitations remain when compared to real experimental synthesis. First, while

PubChem provides a practical and high-throughput filter, certain organic spacers not

listed in its database may still be accessible through complex synthetic routes, as demon-

strated in organic photovoltaic research[116]. Second, the formability descriptors rely on

boundaries derived from reported positive data, leaving unexplored regions in the param-

eter space. Refining these boundaries as new DJ-phase spacers are reported could further

expand the pool of viable candidates. Finally, the screening process does not fully capture

certain experimental considerations critical to practical synthesis. For conjugated organic

spacers, solubility stands out as a significant factor. Specifically, increasing the number

of rings to three or more can lead to solubility issues[71], which are particularly relevant

for type Ib and IIa spacers. This challenge may be mitigated by structural modifications,

such as incorporating short alkyl side chains to disrupt the planarity of the conjugated

backbone, a strategy commonly employed in organic photovoltaics[116], [121]. Addition-

ally, key experimental parameters—such as solvent choice, precursor ratios, temperature,

and pH—are not accounted for in our method. These factors can influence whether the

DJ phase forms or if alternative phases (e.g., 1D, 0D, or RP phase) are favoured with the

same organic spacer[100].
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5.2 Inverse design of DJ perovskites with targeted energy

level alignment

In this section, we apply an inverse design strategy for selecting organic spacers that

achieve three specific energy-level alignment types relevant to DJ perovskite applications:

Type IIa, Type IIb, and Type Ib. This approach leverages the invertible molecular fin-

gerprint representation, allowing us to map from desired energy level alignments back to

potential organic spacer structures. First, we identify unique fingerprint characteristics

based on ML-predicted energy level alignment and synthesis feasibility analysis. These

fingerprints are then inverted to reconstruct the corresponding organic spacer structures

within the expanded chemical space. Since the fingerprint criteria follow well-defined

boundary conditions, this method enables a systematic and exhaustive exploration of the

chemical space for targeted alignment types.

5.2.1 Rationale for inverse design framework

The primary objectives of our inverse design approach are:

(1) Exploring uncharted regions of the DJ perovskite energy landscape, focusing specifi-

cally on Type IIa, Type IIb, and Type Ib alignments.

(2) Ensuring synthetic feasibility, so that the identified organic spacers are relevant for

experimental validation.

Limitations of the forward design approach

Up to this point, our computational design strategy has relied on a forward design ap-

proach, employing high-throughput screening to evaluate ∼ 104 hypothetical organic spac-

ers. This has successfully led to experimentally viable Type IIa and Type IIb candidates.

However, two critical challenges remain:

(1) Absence of Type Ib candidates: Despite screening a large chemical space, no organic
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spacers satisfying Type Ib energy alignment have been identified. This is primarily due

to synthetic challenges, as many potential Type Ib spacers are systematically filtered out

during feasibility screening.

(2) Limited Exploration of the Chemical Space. The screening process has been con-

strained to lower-generation organic spacers (G0 − G4), totaling ∼ 104 candidates. How-

ever, the number of possible organic spacers increases exponentially in later generations.

This means that a significant portion of the design space remains unexplored, potentially

missing optimal organic spacers that exist beyond the current screening limits.

Transitioning to an inverse design approach

To overcome the limitations of forward design, we adopt an inverse design approach,

leveraging our invertible molecular fingerprint representation—a key feature of our forward

design workflow. This enables us to reverse-engineer organic spacer structures directly

from target energy level alignments while ensuring synthetic feasibility. Unlike forward

design, which requires exhaustive screening, this inverse approach allows us to map directly

from desired properties (energy level alignment and synthesis feasibility) to molecular

fingerprints, and subsequently to organic spacer structures. The inverse design process

consists of the following steps:

(1) Identify molecular fingerprints associated with targeted energy level alignments and

synthetic feasibility constraints.

(2) Reconstruct organic spacers by inverting the selected fingerprints. Obtain synthesiz-

able candidate through synthesis feasibility screening.

(3) Validate the energy level alignment of the designed DJ perovskites through DFT

calculations.

By implementing this target-driven approach, we bypass the computational bottlenecks

of exhaustive forward screening, enabling a systematic and efficient exploration of the

chemical space to identify optimal organic spacers.
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5.2.2 Constructing fingerprint for targeted alignment types

Previous chapters have established a strong correlation between molecular fingerprints and

energy level alignment types. By analysing statistical trends in the fingerprint data from

G0 −G4 organic spacers, we identify distinct molecular features that are closely associated

with specific alignment types.

Figure 5.11: Distribution of organic fingerprints associated with different energy level
alignment types.

Figure 5.11 presents the distribution of 12 molecular descriptors in organic spacers that

pass synthetic feasibility screening, categorized by their respective alignment types. The

statistics of the 12 organic descriptors for qualified organic spacers from G0 − G4 are

depicted. The dots indicate the range, while the bars represent the 95% confidence interval

of each descriptor, color-coded according to their alignment type (Ia, IIa, IIb). For Type Ib

spacers, no candidates were identified in G0 − G4, primarily due to synthetic accessibility
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constraints. To gain insight into their characteristic features, we considered organic spacers

that theoretically satisfy Type Ib energy alignment without enforcing synthetic feasibility

constraints.

We identified distinct molecular fingerprint characteristics associated with different energy

level alignments. Type Ia spacers exhibit a broader range of descriptor values, which

corresponds to their higher prevalence in the organic spacer dataset. In contrast, Type

IIa, IIb, and Ib spacers display more defined clustering patterns, suggesting that specific

molecular features play a critical role in determining their alignment behaviour.

Among these, the number of rings, primary ammonium groups, and linker length emerge

as the key distinguishing factors. Notably, the number of rings differs significantly across

alignment types: Type Ib = 5; Type IIa = 2–4; Type IIb = 1.

These trends provide valuable insights into the molecular fingerprint characteristics most

likely to yield qualified organic spacers for targeted energy level alignments.

Based on statistical probability analysis, we define boundary conditions for fingerprint

values that are most likely to correspond to targeted energy level alignment types (Figure

5.12). The fundamental principle in setting these criteria is to capture the range indicated

by the confidence interval, ensuring that the selected fingerprint space is broad enough to

include promising candidates while remaining computationally manageable.

For example, Type IIa spacers encompass a large number of candidates if a single finger-

print set is used. To refine the selection and improve specificity, we introduce additional

fingerprint criteria based on the conjugated backbone structure. Specifically, we clas-

sify Type IIa spacers into two distinct subgroups: oligothiophene-like organic spacers,

characterized by linked 5-membered rings; and acene-like organic spacers, featuring fused

6-membered rings.

By establishing fingerprint-based selection criteria, we define a finite and exhaustible chem-

ical search space (as demonstrated below), enabling a systematic and targeted search for

viable organic spacers that satisfy both energy alignment and synthetic feasibility con-
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Figure 5.13: Organic spacer counts for each energy alignment type across generations
G0 − G11

Using the fingerprint criteria, we systematically map the chemical space to identify po-

tential organic spacers that meet the desired energy alignment and synthesis feasibility

constraints. As shown in Figure 5.13, the number of viable organic spacers for each finger-

print criterion follows a single-peak distribution across generations: Starts at zero in early

generations (G0 −G1).; Peaks at an intermediate generation (G5 −G9); Diminishes to zero

by G11, marking a natural endpoint where no additional spacers satisfy the criteria. The

decline at G10 and G11 suggests that beyond these generations, no additional chemically

meaningful spacers are likely to exist within the defined fingerprint constraints.

This approach enables us to overcome the limitations of the enumerable chemical space

(G0 − G6, approximately 106 spacers, with the number expected to increase exponentially

in later generations) and conduct an exhaustive search across the entire chemical space

within the defined fingerprint constraints. While viable spacers may exist beyond this
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subregion, our analysis suggests that it represents the most promising region for identifying

candidates efficiently while maintaining an affordable computational cost.

Our search identified three type Ib organic spacers in G7 − G9, 14 type IIa candidates in

G3 − G9, and 58 type IIb candidates in G2 − G6.

5.2.3 Mapping fingerprint to organic spacers structures

Type Ib

Figure 5.14: The explored fingerprint range and vs. fingerprint range of type Ib final
organic spacer candidate.

For Type Ib alignment, the identified fingerprint range corresponds to 347 organic spacers.

However, only three of these spacers pass the synthesis feasibility screening, primarily due

to synthetic accessibility constraints.

The fingerprint range of the selected organic spacers is shown in Figure 5.14. All three

share highly similar fingerprint characteristics, with the only variation being ammonium

position. Their key structural features include:
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- A conjugated backbone consisting of five fused 6-membered rings.

- Two ammonium groups serving as tethering groups.

- No heteroatom substitutions (e.g., nitrogen, oxygen, or fluorine).

- No side chains attached to the backbone.

As illustrated by the explored range of organic fingerprints, organic spacers with additional

variations—such as an increased number of rings, longer linker lengths, or alternative linker

positions—were excluded from the final selection, primarily due to their absence from the

PubChem database, indicating limited synthetic accessibility.

The structures of the three identified organic spacers are presented in Figure 5.15.

H3N NH3

NH3

NH3

NH3 NH3

5 0 1 2 0 10/11 0 0 0 0 0 0 5 0 1 2 0 9/11 0 0 0 0 0 0

5 0 1 2 0 8/11 0 0 0 0 0 0

Figure 5.15: Inverse designed candidates for type Ib alignment.

Type IIa

For Type IIa spacers, the identified fingerprint set corresponds to 720 organic spacers

for oligothiophene-like structures and 88 organic spacers for acene-like structures. After

applying synthesis feasibility screening, only 14 candidates remained as final selections.

The fingerprint range of the selected final candidates is shown in Figure 5.16. These

candidates primarily exhibit the following key structural characteristics:
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Figure 5.16: The explored fingerprint range and vs. fingerprint range of type IIa final
organic spacer candidate.

- Conjugated Backbone: Multiple linked thiophene rings (oligothiophene-like) or fused

benzene rings (acene-like).

- Tethering ammonium groups: Two primary ammonium groups with varying linker

lengths.

- No heteroatom substitutions (e.g., nitrogen, oxygen, fluorine).

- No side chains attached to the backbone.

The organic spacer structures are presented in Figure 5.17. Notably, for each fingerprint,

only one organic spacer successfully passed synthesis feasibility screening, while all other

isomers were filtered out.

For instance, considering AE4T as an example, although its isomers exhibit similar elec-

tronic properties, their synthetic feasibility—specifically, synthetic accessibility—varies

significantly. The excluded isomers were primarily filtered out due to: Uneven linker
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Figure 5.17: Inversed designed candidates for type IIa alignment.
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lengths on the two primary ammonium groups, and alternative ring linkage patterns that

deviated from the feasible synthetic routes.

These findings highlight the importance of synthesis feasibility constraints in determining

the practical viability of Type IIa organic spacers, beyond their electronic properties alone.

Type IIb

Figure 5.18: The explored fingerprint range and vs. fingerprint range of type IIb final
organic spacer candidate.

For Type IIb spacers, the identified fingerprint set corresponds to 823 organic spacers.

After applying synthesis feasibility screening, 58 candidates remained as final selections.

The fingerprint range of the final synthesizable candidates is shown in Figure 5.18. Com-

pared to other alignment types, the distribution suggests that Type IIb spacers exhibit

less variation in backbone and tethering group features, while showing greater diversity in

heteroatom substitutions and side-chain modifications. These candidates primary exhibit

the following key structural characteristics:

- Conjugated backbone: Typically one ring, either 5-membered or 6-membered.
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- Tethering ammonium group: One primary ammonium group, mostly with a single carbon

in the linker.

- Heteroatom substitutions: Presence of one or more pyridine-type nitrogen substitutions.

- Side-chain variations: Broader diversity compared to other alignment types.

The organic spacer structures are presented in Figure 5.19. Interestingly, we observed that

multiple Type IIb organic spacers often share identical fingerprints.

5.2.4 DFT validation of designed DJ perovskites

We constructed DJ perovskite structures based on the designed organic spacers and per-

formed DFT calculations to validate their energy level alignments. The DFT validation

results, summarized in Figure 5.20, compare all final candidates with experimentally re-

ported DJ perovskites. The newly identified organic spacers significantly expand the en-

ergy level alignment landscape, covering a much broader range than previously reported

structures. Notably, most of the inverse-designed structures exhibit the targeted energy

level alignment, demonstrating the effectiveness of our AI-assisted inverse design workflow.

In the following sections, we discuss the discovered organic spacers for each energy level

alignment type, along with key molecular design insights. We show that all selected organic

spacers originate from well-established research fields:

• Type Ib and Type IIa candidates are primarily derived from organic electronics

and optoelectronic research [122], [123], including acene- and oligothiophene-based

molecules.

• Type IIb candidates are predominantly associated with medicinal chemistry, featur-

ing structures such as diazine-based molecules.

Type Ib energy level alignment
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Figure 5.19: Inverse designed candidates for type IIb alignment (Part 1).
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Fingerprint Organic spacers
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Figure 5.19: Inverse designed candidates for type IIb alignment (Part 2, continued).
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Figure 5.20: Scatter plot depicting the predicted DJ perovskites with targeted alignment
types (Ib, IIa, and IIb) alongside previously reported structures.

Designing type Ib spacers proved the most challenging due to the need for a highly con-

jugated backbone with small HOMO-LUMO gap. Our analysis revealed that only acene-

based spacers with at least five linearly fused benzene rings can achieve the required small

HOMO-LUMO gap (< 2.3 eV, below the inorganic bandgap). Other conjugated back-

bones, such as benzene (linked) or thiophene (either linked or fusion) with a comparable

number of rings, are ineffective.

Acene-based materials, extensively studied in organic electronics[123], exhibit a progres-

sively narrowing HOMO-LUMO gap as the number of rings increases.

Both two identified type Ib spacers feature a pentacene backbone with two ammonium

tethering groups. While higher acene derivatives (e.g., hexacene, heptacene) could theo-

retically achieve even smaller HOMO-LUMO gaps and guarantee type Ib alignment, they

were absent from the PubChem database, likely due to the limited chemical stability of

higher acenes.
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Figure 5.21: Electronic structure of final candidate selections for type Ib DJ perovskites.

The electronic structure of the two proposed DJ perovskites exhibiting Type Ib alignment

is shown in Figure 5.21. The left panels display the projected density of states (PDOS),

illustrating the electronic contributions from the organic (red) and inorganic (blue) com-

ponents, with the Fermi level set to 0 eV (dashed line). The right panels show the charge

density distributions of the band edge states (VBM and CBM). The yellow isosurfaces

indicate the spatial distribution of electronic states, confirming that both the VBM and

CBM of the DJ perovskite are primarily contributed by the organic component. More-

over, the HOMO and LUMO of the organic spacers are predominantly localized along the

pentacene backbone, where the π-electron density is most concentrated and delocalized.

Comparison with reported 2D perovskites

To date, only one diammonium organic spacer featuring type Ib alignment has been the-

oretically designed in DJ lead-iodide perovskites[109]. This spacer, which also features a

pentacene backbone with two methylammonium tethering groups, was identified in our

126



5.2.4 DFT validation of designed DJ perovskites

inverse design (appear in G4), but was excluded in the subsequent PubChem filtering step.

The only experimentally synthesized 2D lead-iodide perovskite spacer with type Ib align-

ment belong to RP phase[72].In that study, Type Ib alignment was inferred based on pho-

toluminescence (PL) emission from the organic component and qualitative energy level

estimations using a series of approximations. However, relying on optical properties alone

to deduce electronic alignment is questionable, as optical gaps do not always directly cor-

respond to electronic energy levels. Moreover, their DFT calculations suggested a mixed

alignment between Type IIa and Type Ib, with a mixing factor of 0.25.

Our calculations (Figure 5.22), performed using the same perovskite structure as in their

study, indicate that the alignment is actually Type IIa, regardless of whether we apply

the systematic mixing factor of 0.4 used throughout our study or the 0.25 mixing factor

employed in the previous work. The discrepancy in computational results is likely due to

differences in software implementations and methodological choices.

While direct comparisons across different simulation methodologies and experimental tech-

niques remain challenging in 2D perovskite research[97], the relative trends within our cal-

culations—conducted with a consistent set of computational parameters—are internally

reliable. These findings suggest that our proposed pentacene-based organic spacers pro-

vide a more precise and controllable approach for achieving Type Ib energy level alignment

in 2D perovskites.

Type IIa energy level alignment

Achieving Type IIa alignment typically requires extended conjugation through an in-

creased number of aromatic rings to raise the HOMO energy level. Our inverse design

approach identified two major families of organic spacers that satisfy these criteria: acene-

based molecules with fewer rings than pentacene and oligothiophene-based molecules. It

is well established in organic chemistry that both families exhibit a progressively narrower

HOMO-LUMO gap as the ring count increases.

In the context of organic spacers, these molecules rely on the same principle—extending
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Figure 5.22: Energy level alignment of the previously reported RP-phase spacer claimed
to exhibit type Ib alignment.
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conjugation to elevate HOMO energy levels and reduce LUMO levels. Additionally, our

analysis indicates that increasing the linker length in the tethering ammonium group raises

both HOMO and LUMO energy levels, further influencing energy alignment.

The electronic structures of the 12 DJ perovskites structures exhibiting type IIa alignment

are shown in Figure 5.23. The VBM is primarily contributed by the organic component,

while the CBM remains dominated by the inorganic framework.

Within the oligothiophene family, all identified organic spacers feature linked thiophene

rings with variable ring counts and different linker lengths. This family represents one of

the earliest explored organic spacers in 2D perovskites, and three of these spacers (Figure

5.23a,c,e) have already been reported in the literature [9], [97].

Only one acene-based spacer (Figure 5.23l) was confirmed to exhibit Type IIa alignment,

featuring anthracene with an ethylammonium tethering group. This molecule has been

extensively studied in a theoretical work [109], where it was reported to exhibit a mixed

Type IIa/Ia alignment. The slight mismatch with our findings is likely due to differences

in structural details; however, the overall trend remains consistent between our study and

previous research.

Type IIb energy level alignment

Type IIb spacers typically require a single primary ammonium group and pyridine-type

nitrogen substitutions at multiple positions on aromatic rings to effectively lower the

LUMO level. These organic spacers frequently feature nitrogen-substituted ring systems as

their conjugated backbone, which are well-established in medicinal chemistry and related

fields. For example, our study identified several organic spacers containing six-membered

aromatic diazines, including pyrazine, pyridazine, and pyrimidine. Two of these spacers

were previously predicted in theoretical studies with similar results [104]; however, to

date, no experimental studies have been conducted on DJ perovskites featuring Type IIb

alignment.

Compared to the only known spacer reported in the RP phase, our identified spacers
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Figure 5.23: Electronic structure of inverse-designed type IIa DJ perovskites (Part 1).
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Figure 5.23: Electronic structure of inverse-designed type IIa DJ perovskites (Part 2,
continued).
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Figure 5.23: Electronic structure of inverse-designed type IIa DJ perovskites (Part 3,
continued).
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exhibit significantly simpler structures, suggesting improved synthetic accessibility and

potential for experimental realization.

The electronic structure of the Type IIb DJ perovskites is shown in Figure 5.24. The bot-

tom panel of the partial density of states (PDOS) displays the energy levels at the Z-point

and Γ-point, respectively. Differences in energy levels between these two points indicate

the presence of interlayer coupling between inorganic layers. Notably, most structures

exhibit significant interlayer coupling, due to the small size of organic spacers within this

alignment type.
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 1).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 2,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 3,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 4,
continued).

137



CHAPTER 5. SYNTHESIS FEASIBILITY SCREENING AND FINAL CANDIDATE
VALIDATION

Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 5,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 6,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 7,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 8,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 9,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 10,
continued).
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Figure 5.24: Electronic structure of inverse-designed type IIb DJ perovskites (Part 11,
continued).
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5.2.5 Chemical space visualization of final candidates

Figure 5.25: Chemical space visualization of inverse-designed DJ perovskites.

Figure 5.25 presents a t-SNE projection of the chemical space defined by the 12-digit

fingerprint, highlighting both experimentally reported DJ-phase organic spacers (solid cir-

cles) and newly discovered candidates (open circles) with favorable energy level alignment

types: Type Ib, Type IIa, and Type IIb. The reported spacers cluster primarily in the

left-central region of the map, indicating a relatively narrow exploration of the broader

chemical space. This cluster is dominated by molecules with a single aromatic ring and

short linker lengths. In contrast, the newly discovered candidates—identified through in-

verse design and machine learning—are more broadly distributed, often occupying regions

sparsely populated or entirely unoccupied by known compounds.

Type Ib candidates are located predominantly in the bottom-right region, far from the

known spacers. These molecules tend to have five-membered rings and relatively short

linkers. Type IIa candidates are more widely spread, including both known structures
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near the top of the map and newly identified candidates in remote regions, indicating

chemical diversity within this alignment category. Type IIb spacers are mostly found

in the center-left region, within a moderately dense area of the chemical space, yet still

occupy a subspace not covered by any reported spacers.

These observations highlight the ability of the proposed workflow to identify chemically dis-

tinct and previously unexplored candidates. The clear spatial separation between known

and newly designed molecules reinforces the novelty of the final candidates and supports

the claim that this data-driven approach effectively expands the chemically relevant design

space for DJ-phase perovskites.

5.3 Chapter summary

This chapter addressed the critical challenge of bridging computational predictions with

experimental feasibility in 2D perovskite design. A two-step screening strategy was in-

troduced to assess the synthetic accessibility of candidate organic spacers, incorporating

cheminformatics-based filtering and literature cross-referencing. This was followed by the

inverse design of final DJ-phase candidates, which balanced desired energy level alignment

with practical constraints. The resulting shortlist of spacers represents a set of experi-

mentally viable materials with targeted electronic properties, laying the groundwork for

future experimental validation.
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Summary and Outlook

6.1 Summary of key contributions

This thesis presents a comprehensive framework for the AI-assisted inverse design of

DJ-phase 2D perovskites with targeted electronic properties. By integrating an invert-

ible molecular fingerprint, high-throughput DFT calculations, and a synthesis feasibility

screening strategy, the proposed workflow enables property-driven generation of organic

spacers that are both theoretically promising and experimentally viable. This framework

supports efficient exploration of vast chemical spaces and offers a systematic approach

to designing lab-synthesizable DJ-phase perovskite materials. Beyond DJ systems, the

underlying principles—particularly the use of interpretable and invertible molecular rep-

resentations—provide a transferable strategy applicable to a broad range of hybrid mate-

rials.

The key contributions of this work are as follows:

First, we developed a 12-digit fingerprint representation tailored to encode key structural

features of organic spacers in a machine-readable and human-interpretable format. This

invertible fingerprint simplifies the inverse design process by enabling direct generation

of candidate structures without relying on complex AI architectures such as deep neural
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networks. The modular design of the fingerprint also allows for adaptation to other families

of small organic molecules with user-defined structural features.

Second, we significantly expanded the design space of DJ-phase spacers—from approxi-

mately 2̃0 known experimental molecules to over 1̃06 hypothetical candidates—through

systematic morphing operations. From this expanded space, 7̃0 final organic spacers were

identified with favorable energy level alignments (Types Ib, IIa, and IIb). Many of these

candidates exhibit structural features distinct from reported molecules, thereby offering

new insights and opportunities for experimental realization.

Third, we demonstrated that interpretable, physics-informed machine learning models,

specifically linear regression using domain-relevant descriptors, can achieve high predic-

tive performance. This supports the notion that incorporating expert knowledge into

model design can offer a more transparent and effective alternative to complex, black-box

approaches, especially when training data is limited.

Finally, we introduced a synthesis feasibility screening filter based on synthetic acces-

sibility of organic spacers (from PubChem) and assessment of 2D formability based on

hydrogen bonding between organic and inorganic components. To our knowledge, this

is the first virtual synthesis feasibility filter tailored specifically for DJ-phase perovskites.

This screening step enabled the prioritization of a shortlist of realistic, lab-accessible candi-

dates with desirable electronic properties, bridging the gap between computational design

and experimental synthesis.

Addressing research gaps

This work directly addresses several research gaps outlined in Chapter 2:

• Data scarcity is addressed through the generation of a large, systematically con-

structed dataset based on molecular morphing and high-throughput DFT calcula-

tions, significantly expanding the known chemical space of DJ-phase organic spacers.

• Structure–property relationships are revealed through interpretable machine learning
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models trained on physics-informed descriptors. These descriptors are derived from

insights gained through high-throughput DFT simulations and are designed to reflect

relevant molecular and electronic features.

• Constraints of hybrid materials are incorporated through the fingerprinting scheme,

which defines a chemically meaningful and computationally tractable scope of or-

ganic spacers compatible with 2D perovskite structures.

• The interaction between the organic and inorganic components are reflected in the

synthesis feasibility filter, which includes a 2D formability assessment based on po-

tential hydrogen bonding interactions, providing an initial proxy for evaluating the

compatibility between organic cations and the inorganic lattice.

6.2 Limitations and challenges

While the ML-assisted workflow has proven effective in the inverse design of organic spac-

ers with targeted energy level alignments, several challenges remain. The first limitation

arises from the inability to identify certain organic spacers previously designed by organic

chemistry experts. This shortfall stem from the trade-off inherent in the fingerprint repre-

sentation, which, while compact and interpretable, confines the scope of explored chemical

space. As discussed in Chapter 3, this fragment-based fingerprint vector restricts explo-

ration to a specific subset of organic spacers, for example, excluding organic spacers with

additional ring on vertical direction, or inclusion of triple bonds as those designed by

chemistry experts. As a result, compounds that fall outside this scope—such as triple

bonds and additional rings on vertical direction—remain unaddressed[72], [106]. This

limitation underscores a broader challenge in AI-driven materials discovery: bridging the

gap between machine exploration and the expert intuition cultivated through decades of

experimental research.

The second limitation pertains to reduced prediction accuracy, particularly as the molec-

ular structure becomes more complex. This reflects another fundamental limitation of
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machine learning models: their performance is intrinsically tied to the quality and diver-

sity of the training data provided. We identified two key aspects of chemistry insights that

were not included in the machine learning model as a trade-off to reduce computational

cost:

(1) Input feature limitations: the input features (fingerprint) do not adequately capture the

increased structural complexity of the final candidates, which can significantly influence

their energy levels. This includes distinctions in energy levels among certain isomers with

identical fingerprints and variations due to the conformations of organic spacers in hybrid

perovskite structures.

(2) Training data scope: the training data, drawn primarily from G0 − G3 spacers, en-

compasses a narrow feature space, predominantly featuring spacers with 1-4 rings (61%

containing 1-2 rings). This limited dataset leads the model to learn structure-property

relationships within this range. However, the model struggles with higher-generation spac-

ers outside this feature space, where chemistry deviates significantly, because it lacks prior

exposure to such chemistries. Addressing these limitations, through more comprehensive

fingerprints or including higher generation spacers in the training data would require a

substantial increase in computational resources.

6.3 Outlook

Despite these challenges, the workflow represents a versatile tool for materials discovery,

with several opportunities for refinement and broader application:

1. Expanding target properties: the workflow can be adapted to optimize other

properties in DJ perovskites, such as chirality, charge mobility, etc.

2. Applicability to other systems: While this workflow is directly applicable to 2D

perovskite organic spacers, it can be extended to other materials systems, especially

those involving small organic molecules by customizing the molecular fingerprint.
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3. Flexible data sources: The data generation need not rely solely on high-throughput

DFT calculations, Alternative sources, such as high-throughput experiments or other

simulation techniques, can be integrated into the pipeline.

4. Advanced machine learning models: The pipeline could be enhanced with more

sophisticated machine learning models to capture nonlinear and intricate structure-

property relationships. Strategies such as active learning or Bayesian optimization

could further refine the selection of final candidates.

5. Multi-objective optimization: Future work should incorporate additional performance-

relevant properties such as exciton binding energy, defect-formation energy, and

charge carrier mobility. These properties are critical for practical device deploy-

ment, and their inclusion would support a more comprehensive understanding of

structure–function relationships in 2D perovskites.

6. Application-specific material selection guidelines: To enhance the practical

relevance of this work, future studies could establish device-oriented selection crite-

ria based on predicted material properties. For instance, mapping band alignment

and mobility into charts tailored for specific applications—such as LEDs (requiring

type-I alignment and high radiative efficiency), photovoltaics (type-II with optimal

offsets), or transistors (requiring low effective mass and high carrier mobility)—would

significantly enhance the utility of AI-assisted material discovery.
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