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Abstract 

Artificial intelligence (AI)-assisted workflows have transformed materials discovery, enabling rapid 

exploration of chemical spaces of functional materials. Endowed with extraordinary optoelectronic 

properties, two-dimensional (2D) hybrid perovskites represent an exciting frontier, but current efforts 

to design 2D perovskites rely heavily on trial-and-error and expert intuition approaches, leaving most 

of the chemical space unexplored and compromising the design of hybrid materials with desired 

properties. Here, we introduce an inverse design workflow for Dion-Jacobson perovskites that is built 

on an invertible fingerprint representation for millions of conjugated diammonium organic spacers. 

By incorporating high-throughput density functional theory (DFT) calculations, interpretable machine 

learning, and synthesis feasibility screening, we identified new organic spacer candidates with 

deterministic energy level alignment between the organic and the inorganic motifs in the 2D hybrid 

perovskites. These results highlight the power of integrating invertible, physically meaningful 

molecular representations into AI-assisted design, streamlining the property-targeted design of hybrid 

materials. 

Teaser 

AI-driven design pinpoints new 2D perovskites with tailored electronic properties for next-gen 

materials. 

  



Introduction 

Recent advances in artificial intelligence (AI) have brought a paradigm shift in materials discovery, 

allowing researchers to explore vast chemical and structural spaces far more efficiently than traditional 

experimental and theoretical methods(1-3). By learning complex patterns from existing data, machine 

learning (ML) models can rapidly predict material properties(4), optimize design parameters(5), and 

identify promising candidates for diverse applications(6, 7). Inverse design has emerged as a 

transformative approach to reverse the conventional design process, allowing the discovery of new 

materials with targeted properties(8, 9). Various methods, including generative models(10, 11), 

optimization algorithms(12), and invertible materials representation(13), have been developed to 

enable the inverse design pipelines. These innovations have accelerated materials discovery across a 

myriad of material domains, ranging from solid-state inorganic crystals(13), high-entropy alloys(6), 

to organic semiconductors(12) and metal-organic frameworks (10).  

Two-dimensional (2D) hybrid perovskite presents an exciting frontier for the inverse design of 

materials due to their much larger design space associated with organic cation spacers, relative to the 

3D perovskite counterparts(14-16). These materials have demonstrated exceptional properties and 

played pivotal roles in many optoelectronic devices such as photovoltaics and LEDs(17-20). In the 

2D hybrid perovskite family, the Dion-Jacobson (DJ) phase is particularly interesting, featuring 

diammonium organic spacers and the absence of van der Waals gaps. Expanding the chemical space 

of 2D perovskites holds great potential to further advance their optoelectronic device performance by 

tuning band structure(21, 22), enhancing charge transport(23-25), and stability(26, 27). While design 

principles for adjusting the composition and thickness of inorganic layers have been well-

established(28, 29), the exploration of organic spacers relies heavily on trial-and-error 

experimentation and expert intuitions(14, 30). In particular, current approaches typically focus on 

modifying functional groups in known spacers(31, 32) or drawing insights and borrowing molecular 

fragments from organic photovoltaics(33, 34). While these methods have been effective and produced 

some breakthroughs, a general methodology catering to the characteristics of hybrid perovskites is 

still lacking, which limits the exploitation of the vast chemical space and the elucidation of the 

structure-property relationship. 

AI-assisted workflows are beginning to address these challenges outlined above. An early study has 

used ML models trained on 86 reported organic spacers in lead-based 2D perovskites to derive design 

rules for predicting the perovskite dimensionality of five new organic spacers(35). Recent approaches 

have expanded the scope of spacer exploration considerably. For instance, Wu et al. utilized a ML 

model trained on 80 high-throughput synthesized lead-free double perovskites to evaluate the 

synthesis feasibility of 8,460 organic spacers from PubChem(36). In another study, molecular 

dynamics simulations on over ten-thousand hypothetical organic spacers were used as training data to 

select six new ligands for perovskite synthesis(37). However, the forward design approach of the prior 

studies typically requires exhaustive searches of chemical space to identify optimal candidates, and 

the unidirectional structure-representation-property pipeline restricts the efficiency and scalability to 

discover materials with targeted properties. Therefore, the potential of inverse design remains far from 

being fully leveraged in the discovery of hybrid materials. Furthermore, while the prior studies have 

primarily focused on formability and stability, a critical gap remains in the application of AI-assisted 

workflow to predict physical properties of 2D perovskites. In particular, energy level alignment, a key 

property controlling the spatial distribution and transfer of charge carriers and excitations in 

semiconducting materials and their interfaces, directly impacts the performance of optoelectronic 

devices. Different from well-studied elemental and compound semiconductors, organic and inorganic 

components in hybrid perovskites are heterogeneous with separate energetics, forming quantum-well-

like structures(31). Although 2D perovskites have been investigated using traditional workflows, such 

as the Edisonian approach(31, 33) and high-throughput calculations(38, 39), systematic exploration 



of the energy level alignment through AI-assisted approaches is still in its early stages(40), presenting 

a significant opportunity for advancement.  

In this study, we introduce a machine learning-assisted inverse design workflow to navigate the 

chemical space of diammonium organic cations as building blocks of DJ perovskites. At the core of 

our workflow is an invertible representation of 12-digit fingerprint vectors for conjugated organic 

spacers that bridges the structure of organic spacers and the target property of energy level alignment. 

We expanded the pool of organic spacers from the 21 reported spacers to millions of hypothetical 

candidates with diverse fingerprints using a morphing operation approach. The electronic structures 

of a subset of these candidates are determined using high-throughput density functional theory (DFT) 

calculations, which then guides the navigation of the chemical space using ML. Furthermore, the 

synthesis feasibility of these hypothetical DJ perovskites is evaluated based on the synthetic 

accessibility of organic molecules and the formability of 2D structures. Finally, our inverse-design 

workflow ends with DFT validations, offering new organic spacers to construct DJ perovskites with 

energetic alignment types of Ib, IIa, and IIb. 

 

Results  

Workflow based on invertible molecular fingerprints  

The AI-assisted inverse design workflow is illustrated in Fig. 1. This workflow was designed based 

on the unique nature of 2D hybrid perovskites and the targeted property of band alignment. It begins 

with chemical space expansion using a molecular morphing approach. To realize an invertible 

representation of conjugated diammonium organic spacers, they are encoded into a compact 12-digit 

fingerprint vector. Based on the physical insights obtained on 21 existing spacers reported for DJ 

perovskites, we generated the fingerprints of approximately 4106 hypothetical spacers with 

complexity comparable to the reported ones. High-throughput density functional theory (DFT) 

calculations were then used to evaluate the energy levels of the corresponding hybrid perovskites 

within a designated subset (3,239) of the chemical space, which were used as the training data. Next, 

various regression models were trained using fingerprints as input features and organic frontier levels 

as target property, aiming to extract insights on the structure-property relationship. The hypothetical 

spacers were then down selected using a two-step synthesis feasibility screening funnel based on their 

availability in the PubChem database and multiple reported formability descriptors specific to forming 

2D perovskite structures. Lastly, feasible candidates for targeted energy level alignment types are 

validated using DFT calculation. By integrating these components, the workflow facilitates inverse 

design of DJ perovskites with rarely explored Ib, IIa and IIb band alignment types (classification of the 

alignment types is discussed in fig. S1).  

While the components of this workflow—database generation, high-throughput calculations, machine 

learning, and DFT validation—are common to AI-assisted materials discovery(4, 41, 42), the 

distinctive feature here is the integration of an invertible materials representation. Invertibility is a key 

attribute for materials representations in inverse design(9), ensuring two-way conversion between 

molecular structure and their representation. This type of invertible representation has been applied to 

some materials systems(10, 13), but this is the first implementation in the context of hybrid materials. 

The absence of a versatile scheme of organic spacer representation has confined 2D perovskite 

research to forward design approaches, limiting the exploration of available chemical space. As we 

will show in this work, the workflow developed herein overcomes these limitations, facilitating the 

energy level alignment prediction. In addition, we expect that this fingerprint-based workflow will be 

generalized to investigate the correlation of other material properties with organic motifs in a wide 

range of hybrid material systems.  

As shown in Fig. 2, our fingerprinting scheme leverages the unique chemical properties and structural 

characteristics of conjugated organic cations in 2D DJ perovskites, comprising two key components: 



molecular fragmentation and functional group encoding. Considering the structural motifs shared by 

reported conjugated diammonium spacers (fig. S2), the DJ-phase organic spacers explored in this 

work are assumed to consist of four fragments: (1) a conjugated backbone of aromatic rings; (2) two 

tethering ammonium groups that anchor the spacer to the inorganic framework; (3) optional 

heteroatom substitutions; and (4) optional side chains. These structural constraints significantly 

narrow the chemical space from a potentially immense size (estimated at ~1060 molecules for small 

organic molecules, as recognized in the context of drug discovery(43)) to a much smaller subspace of 

organic spacers. We should note that the resulting chemical space is not exhaustive, leaving out some 

spacers, for example ones with alkyl backbones or non-continuous conjugation (fig. S3), but this 

fingerprinting scheme leads to a chemically relevant and computationally manageable set of organic 

cations (vide infra), giving rise to 2D DJ perovskite candidates with tailored properties. We primarily 

focused on semiconducting π-conjugated molecules due to their high relevance to optoelectronic 

applications of 2D perovskites and rich chemical diversity. 

The encoding component of the scheme translates molecular structure into a fingerprint vector 

containing 12 customized descriptors, each representing a specific structural feature. Eleven 

descriptors are obtained by counting functional groups, while a unique “ammonium position” 

descriptor is derived from a distance matrix (fig. S4). The main principle is to choose a minimal 

number of descriptors to reduce computational cost while these descriptors must be sufficient to 

describe the organic spacers relevant to DJ perovskites. As we will show later in the ML result, there 

is minimal overlap between the descriptors, and they capture essential features for energy level 

prediction.  

We should note that the molecule-fingerprint correspondence is not exclusive, in other words, some 

molecular isomers share the same fingerprint (fig. S5). Although additional descriptors, or longer 

fingerprints (e.g., heteroatom substitution position, and side chain position) could offer more structural 

detail, we found such features have minimal impact on electronic properties (the feature-energy 

correlation will be discussed in detail in later sections), making the current fingerprinting scheme 

sufficient for predicting new DJ perovskites with all four band alignment types. Furthermore, the non-

exclusivity of the fingerprint does not hinder its invertibility in the context of inverse design. The aim 

is not to recover a single, unique molecule, but rather to generate a set of candidate structures 

consistent with the particular fingerprint and endowed with the target energetics.  

In previous AI-assisted 2D perovskite discovery efforts, organic spacers are typically represented 

using physicochemical descriptors(36, 37), but an effective molecular representation scheme that can 

explicitly capture the molecular structure has not been established. In the myriad research fields 

involving organic molecules, the structural variations are often encoded using digits (e.g., fingerprints), 

strings (e.g., SMILES), or graph-based methods(9). Among these, fingerprinting methods—such as 

the widely adopted but non-invertible 2048-digit Morgan fingerprint—have demonstrated their 

efficiency in AI-assisted workflow(44, 45). In contrast, our 12-digit fingerprint scheme has been 

tailored according to the specific attributes of 2D hybrid perovskites, offering several advantages. 

First, it is efficient, with minimal redundancy and overlap between descriptors, ensuring a compact 

representation that captures structural variation most relevant to DJ perovskites. Second, it is 

interpretable, enabling human experts to extract meaningful insights into the encoded structural 

variations. Finally, it is invertible, allowing direct mapping back to the molecular structure by both 

human experts and machines, which is essential for inverse design. 

Chemical space establishment and high-throughput calculations  

We begin the workflow by enumerating hypothetical organic spacers within the defined chemical 

space. We used a molecular morphing approach to generate fingerprints of organic spacers (38, 46), 

resulting in diverse yet uniform variations in the 12-digit fingerprint vector (Fig. 3A). The starting 

point is the most basic, well-characterized molecule, phenylene-dimethylammonium (‘PDMA’)(47), 



defined as Generation 0 (G0). PDMA was selected for its simplicity, synthetic accessibility, and 

widespread use as a spacer in DJ perovskites, making it a suitable center of scaffold for constructing 

the chemical space. From this seed molecule, we iteratively applied 13 morphing operators to 

introduce incremental modifications, creating a progressively enlarged set of hypothetical spacers (see 

Methods and fig. S6-7). This approach yields a broad spectrum of organic spacers, extending beyond 

the frequently studied phenyl- and thiophene-containing families to include structures incorporating 

heteroatoms (e.g., F, O, and N) and side chain modifications. Across generations G0-G6, we 

enumerated a total of 21,306 fingerprints in these generations, corresponding to 4,887,100 

hypothetical organic spacers. All 21 experimentally reported organic spacers were captured within 

this set, demonstrating the representativeness and coverage of our enumerated chemical space. The 

neutral forms of the hypothetical spacers were cross-referenced with the PubChem database. Within 

generations G0-G6, 9,025 spacers were identified in PubChem. Due to computational constraints, we 

paused our exploration at G6. However, as demonstrated later, the inverse design phase guided by 

targeted energy level alignment type overcomes these limitations, enabling exhaustive exploration of 

the chemical space within defined fingerprint criteria. 

The chemical space of spacers across generations G0-G6 is visualized in Fig. 3B. The two-dimensional 

coordinates were obtained using t-distributed stochastic neighbour embedding (t-SNE)(48), a 

nonlinear dimensionality reduction method that transforms the 12-dimensional fingerprints into a two-

dimensional representation. Clusters in the visualization represent spacers with similar fingerprint 

features, while larger distances between clusters indicate greater dissimilarity (fig. S8-9). The 

progressive structural complexity of organic spacers across generations is captured in this 

visualization. Notably, among all reported spacers, the highest-generation (G6) one, ‘AE4T’(49), is 

distinctly separated from other spacers, reflecting its more complex structure. The generated spacers 

exhibit comprehensive coverage of the chemical space. This generative approach to forming a high-

throughput materials database, in comparison to approaches that collect spacers from existing 

databases, yields a more balanced representation. As we will demonstrate in later sections, training 

data derived from this approach enable high predictive accuracy of the machine learning model.  

We further analysed the electronic structure of 261 DJ perovskites formed by both reported spacers 

and those derived from generations G0-G2 of the expanded chemical space. Model crystal structures 

were constructed by inserting organic spacers between the PbI4 layers, with each unit cell containing 

four diammonium spacers and four PbI4 units (see Methods). To align with experimentally observed 

structures, all organic spacers were arranged in herringbone configurations(50); other configurations 

are possible, but our analysis revealed that the packing arrangement has minimal influence on the 

energy level alignment type (fig. S10). The structures were optimized at the GGA/PBE level(51), and 

the relaxed geometries are available in our open-source repository on the Materials Project(52) 

platform. The energy level alignments between organic frontier orbitals and inorganic band edges 

were calculated with the HSE hybrid functional(53), using a mixing factor of 0.4 to match 

experimental bandgaps (Tables S1-2). Spin-orbit coupling (SOC) was included to account for realistic 

effects associated with heavy elements such as Pb. Most DJ perovskites (18 out of 21 existing 

structures) exhibit type Ia energy level alignment, characterized by electrons and holes localized in 

inorganic layers, while the remaining three exhibit type IIa alignment. The variation in energy level 

alignment is primarily dictated by the organic frontier levels (Fig. 3C), which span a broad energy 

range (~6.1 eV), whereas inorganic band edges vary much less (within ~0.9 eV). This observation 

aligns with the common approximation cited in the literature that the inorganic energy levels of 2D 

perovskites can be assumed almost unchanged with different organic spacers(31, 33).  

Analysis of the structure-property relationships across all studied structures reveals several general 

trends in the electronic band structure of 2D perovskites (see schematics in fig. S11). With the 

dominant type-Ia band alignment, the inorganic layers consistently form direct bandgap 

semiconductors, typically at Γ point in the Brillouin zone, whereas in cases where interlayer coupling 



is present (see the discussion below), the bandgap shifts to the Z point. The bands exhibit strong 

dispersion along the in-plane directions, while the dispersion along the stacking direction (Γ-Z) 

depends on the strength of interlayer coupling. Figure S12 shows two key structural factors 

influencing the inorganic band edge states: (1) tilting and distortion of PbI6 octahedra due to the 

hydrogen bonding interaction with organic spacers and (2) orbital overlap between iodide atoms in 

neighbouring layers when the interlayer distance decreases below 5 Å, leading to the Γ-Z energy 

dispersion. This interlayer coupling has also been observed in DJ-phase and ACI-phase perovskites 

with short organic spacers(54, 55).  

The organic highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) show minimal energy dispersion, closely resembling their isolated molecular forms. This 

behaviour is characteristic of herringbone-packed organic spacers, where electronic interactions 

between adjacent organic units are weak(32). Furthermore, the primary influence of the organic 

spacers on the energy level alignment of DJ perovskites lies in their HOMO and LUMO levels, which 

is largely a result of the weak bonding between the organic cations and the inorganic frameworks(14, 

30).  

These organic frontier levels can be efficiently approximated using values computed for the isolated 

organic cations with B3LYP functional(56), a method that is both computationally efficient and 

sufficiently accurate. Figure S13 shows strong linear correlations between the HOMO/LUMO levels 

of hybrid perovskite structures (using HSE + SOC) and isolated cations (using B3LYP) across 252 

structures in G0-G2, validating this simplification. This approach enables us to scale our calculations 

from hundreds to thousands of structures for the subsequent training of machine learning models. As 

shown in Fig. 3C, our calculation results obtained on the DJ perovskites targeted in this work—

including G0-G2 and 75 final candidates, totally 325 organic cations—cover a much wider range than 

the reported ones. 

Machine learning prediction of organic frontier levels  

Machine learning was employed to elucidate the structure-property relationship between the organic 

spacer structure encoded in molecular fingerprints and their frontier energy levels. Beyond offering 

interpretable analysis, machine learning provides rapid and scalable predictions, allowing us to 

extrapolate from thousands of DFT-calculated molecules in generations G0-G3 to millions of 

hypothetical candidates generated in generations up to G6. Our 12-digit fingerprint representation 

integrates seamlessly into the machine learning pipeline as input features. Unlike previous studies that 

rely on diverse chemical descriptors and require feature selection to reduce multicollinearity(36, 37), 

the low correlation among our descriptors (Pearson’s correlation coefficients < 0.5; Fig. 4A) ensures 

that all features contribute independently to target property prediction, enabling direct use of the 

complete fingerprints. 

Our machine learning dataset consists of 3,239 organic spacers in G0-G3, with fingerprints as input 

features and HOMO/LUMO values obtained from high-throughput calculations as target properties. 

We trained separate machine learning models for HOMO and LUMO predictions, with the dataset 

split into training and testing sets (80: 20 ratios). To evaluate predictive performance, we benchmarked 

various regression models commonly used in materials science literature(57), including linear (e.g., 

linear regression, LASSO-type linear regression, etc.) and non-linear (e.g., Random Forest, Support 

Vector Machines, etc.) ones, using the R2 score as the performance metric (Fig. 4B and fig. S14-16). 

Non-linear models achieved a slightly higher R2 score for HOMO/LUMO predictions (0.99/0.97) 

compared to the linear models (0.95/0.95), with the performance gap primarily arising in the lower-

energy range of HOMO/LUMO values. Nevertheless, both model types captured the overall trend 

effectively. Since our primary objective was to classify energy level alignment types rather than 

predict absolute values, and given the similar predictive capability across models, we selected linear 

models due to their enhanced interpretability. The performance and parameters among the linear 



models are nearly identical (fig. S17), therefore LASSO regression was chosen for subsequent 

analyses. 

The LASSO regression model’s simplicity allows direct interpretation of feature importance through 

its unnormalized coefficients. The fitted equations are: 

𝐻𝑂𝑀𝑂 =  1.34𝑥1 + 0.61𝑥2 + 0.03𝑥3 + 1.32𝑥4 + 0.53𝑥5 + 0.10𝑥6 − 0.30𝑥7 + 0.00𝑥8 + 0.04𝑥9

+ 0.43𝑥10 + 0.12𝑥11 + 0.24𝑥12 − 19.23; 

𝐿𝑈𝑀𝑂 =  0.53𝑥1 + 0.84𝑥2 + 0.11𝑥3 + 1.86𝑥4 + 0.51𝑥5 − 0.04𝑥6 − 0.38𝑥7 − 0.11𝑥8 + 0.02𝑥9

+ 0.37𝑥10 + 0.13𝑥11 + 0.14𝑥12 − 13.61 

The coefficients extracted from the model represent the raw impact of each descriptor on the target 

property, i.e., the predicted HOMO/LUMO energy levels. In the HOMO equation, features x1 and x4 

(i.e., numbers of rings and primary ammonium groups, respectively) have the largest contributions. 

While in the LUMO equation, x4 again has the strongest influence, indicating that engineering the 

ammonium groups is probably the most effective way to simultaneously tune the HOMO and LUMO 

levels. The normalized coefficients, provided in fig. S17, offer a scale-independent perspective on 

feature importance, showing only slight differences from the unnormalized results. 

SHAP value analysis (Fig. 4C, D) further confirms the key influence of descriptors related to the 

conjugated backbone and tethering ammonium groups. Among these, the number of aromatic rings in 

the conjugated backbone is known to directly influence the degree of conjugation—a well-established 

design rule in organic semiconductors,(58) which was also recognized to have important implications 

for 2D perovskites(31, 33). In addition to conjugation, the analysis underscores the significance of 

electron richness, another foundational principle in the design of organic semiconductors(58). For 

tethering ammonium groups, the electron-rich alkyl groups associated with primary ammonium can 

raise the frontier levels by increasing the linker length or the number of primary ammonium groups. 

Last but not least, the effect of heteroatom substitution is mixed, depending on the electronic nature 

of the substituent. For example, pyridine-type nitrogen, being electron-withdrawing, lowers both 

HOMO and LUMO, while pyrrole-type nitrogen, being electron-donating, raises both levels. 

Interestingly, fluorination—widely used to enhance stability in 2D perovskite spacers due to the large 

dipole moment induced by its electron-withdrawing ability(59, 60)—shows a relatively minor 

influence on the frontier levels. This limited effect may stem from the fact that fluorine substitution 

does not directly participate in the conjugated -system. While highly electronegative, fluorine’s 

influence remains localized, resulting in minimal perturbation to the frontier orbitals. Representative 

SHAP analysis of organic spacers achieving type IIa and IIb (i.e., with relatively high HOMO/low 

LUMO values) are exemplified in fig. S18-19. 

Overall, our result indicates that the interpretable machine learning model provides an accurate 

prediction of organic frontier levels, and by extension, the energy level alignment of DJ perovskite 

for any organic spacer given its fingerprint. This capability facilitates the rapid identification of 

promising candidates with desired energy level alignment types, accelerating the discovery of DJ 

perovskites.  

Synthesis feasibility screening 

Synthesis feasibility is critical in the AI-assisted materials discovery workflow, as it informs the 

likelihood of experimental realization. For organic-inorganic hybrid materials, accurate prediction of 

synthesis feasibility is particularly challenging due to the complexity inherent in solution-based 

formation processes, limiting the effectiveness of purely first-principles approaches(2, 61). Although 

formation energies can be computed for 2D perovskites and give clues to the thermodynamic stability 

relative to their precursors(32, 62), these calculations rarely consider potential non-2D phases due to 

the combinatorial complexity involved. While a few in-depth studies have explored synthesis 

feasibility and structural stability for RP perovskites by explicitly considering both 2D and competing 



non-2D phases(36, 37), there has been no report on DJ perovskites, and there is a general scarcity of 

feasibility data in the domain of hybrid materials. To address this gap, we developed a straightforward 

two-step screening framework tailored to the unique structural and bonding characteristics of DJ 

perovskites.  

The first step assesses the synthetic accessibility of organic spacers, using PubChem as a proxy for 

practical synthesizability(36). The absence of a certain organic molecule in PubChem often implies 

the challenge and cost associated with its synthesis. Among the enumerated chemical space, 9,025 

organic spacers were identified in PubChem, with a decreasing fraction observed from G0 to G6 (fig. 

S20). This trend is expected since the increasing molecular complexity of higher-generation spacers 

often implies higher synthesis difficulties. Further analysis revealed that this reduced synthetic 

accessibility correlates strongly with specific structural features, in particular, increased ring numbers, 

fluorination, and the number of side chains (fig. S21). We should stress here that while PubChem 

provides a practical and high-throughput filter, certain organic spacers not listed in its database may 

still be accessible through deliberately designed synthetic routes, as demonstrated in organic 

photovoltaic research(58).  

The second step of feasibility evaluation focuses on analysing the bonding characteristics of the 

organic spacers with the inorganic framework in the 2D DJ perovskite structure (fig. S22). As shown 

in Fig. 5A, we introduced a new formability score based on five topological molecular descriptors 

derived from the spacer’s distance matrix (fig. S23 and Supplementary Text). This approach quickly 

estimates the spacers' two-dimensional topology, specifically around hydrogen-donor nitrogen atoms, 

which is suitable for small molecules, while the description of larger molecules may entail the 

knowledge of exact 3D conformation. Four key descriptors—steric hindrance, eccentricity, nitrogen-

nitrogen pair distance, and the number of rotatable bonds in the spacer’s tail—were previously 

validated for effectively distinguishing 2D from non-2D perovskites(35, 36). In the context of DJ 

hybrid perovskites, we identified an additional descriptor from our fingerprinting scheme: relative 

ammonium positions on the backbone. 

We identified a cutoff value of 0.88, which represents the intersection point of probability density 

curves for the sets of reported 2D and non-2D organic spacers. Using this threshold, the formability 

score correctly classified 27 out of 29 cases (fig. S24). Importantly, this method circumvents the 

common conundrum of data scarcity and consequent overfitting associated with machine learning-

based methods (fig. S25). Although this formability screening approach is targeted specifically for DJ 

perovskites, similar ones may be developed for other hybrid materials as along as the appropriate 

descriptors can be identified. 

Application of the formability score to our enumerated chemical space (Fig. 5B) suggests that 96.1% 

of the hypothetical spacers are likely to form DJ phases. Most non-2D cases are associated with small 

one-ring organic spacers. For example, two reported non-2D spacers with the lowest formability 

scores are highlighted in Fig. 5B. Key structural features affecting formability include linker length 

and the number of primary ammonium groups (fig. S26), aligning with some insights obtained from 

previous experimental works(14).  

We should note that some synthesis parameters—such as solvent choice, precursor ratios, temperature, 

and PH value—are not captured by our formability scoring scheme, but they can affect whether the 

DJ phase forms or other phases (e.g., 1D, 0D or RP phase) are favoured with the same organic 

spacer(35). Some organic spacers have been reported to yield both 2D and non-2D structures 

depending on experimental conditions(27, 63). In addition, the solubility of the organic spacers is not 

considered in our synthesis feasibility filtering. In general, increasing the number of rings to three or 

more in conjugated spacers can lead to solubility issues(16). Although this challenge may be mitigated 

by structural modifications—such as incorporating short alkyl side chains to disrupt the planarity of 

the conjugated backbone, a strategy commonly employed in organic photovoltaics(58, 64)—these 



modifications often result in molecules that are less synthetically accessible and missing in PubChem. 

The complications delineated above warrant further endeavours to devise more sophisticated schemes 

to assess the synthesis feasibility and compare with the experimental results carried out in strictly 

controlled conditions.  

DFT validation 

To further validate the candidates that passed the synthesis feasibility screening in generations G0–G6, 

we performed DFT calculations on selected DJ perovskite structures. Due to the high computational 

cost, we focused specifically on those predicted to exhibit targeted energy level alignments (types Ib, 

IIa, and IIb). These calculations were carried out using the HSE+SOC approach, following the same 

protocol described in the high-throughput calculation section, to accurately evaluate the alignment 

between the organic spacers and the inorganic framework. 

Figure 5C provides an overview of the full screening pipeline applied to G0–G6, including molecular 

enumeration, machine learning prediction, synthesis feasibility screening, and DFT validation. In total, 

we identified 8 type IIa and 44 type IIb candidates that passed synthesis feasibility filters and were 

validated by DFT. Notably, no type Ib candidates were found within generation G0–G6. The primary 

bottleneck for type Ib spacers was the synthesis feasibility filter, particularly the requirement for 

synthetic accessibility—none of the organic spacers with type Ib alignment were found in PubChem. 

The molecular structures of these excluded type Ib candidates are provided in fig. S27. 

Beyond validation, the DFT-confirmed structures enable us to extract characteristic fingerprint 

patterns of organic spacers associated with each alignment type. Analysis of the distribution of 

fingerprint descriptors (Fig. 5D) revealed distinct patterns: type IIa candidates typically feature a 

higher number of rings and two primary ammonium groups, whereas type IIb candidates tend to 

exhibit one ring, one primary ammonium. Since no viable type Ib candidates emerged from 

generations G0–G6 due to synthetic accessibility constraints, we included type Ib candidates not found 

in PubChem in Fig. 5D to extract preliminary design insights. These candidates featured five or more 

aromatic rings, suggesting that extended conjugation is a necessary structural characteristic for 

achieving type Ib alignment. 

These structure–property relationships provide interpretable design rules for targeting specific energy 

level alignment types. In the following section, we leverage these insights to guide inverse design, 

focusing on the higher-generation candidates, particularly those with type Ib alignment that were 

underrepresented in the initial chemical space of generations G0–G6. 

Inverse design of final candidates 

The above-delineated materials discovery pipeline focused on generations G0–G6, where organic 

spacers were exhaustively enumerated. However, this approach becomes intractable in later 

generations due to the exponential growth of the chemical space. While we successfully identified 

candidates for type IIa and IIb energy level alignments, no type Ib candidates were found within the 

range of generations G0–G6. To overcome this limitation, we implemented an inverse design strategy 

that directly targets specific regions of chemical space by constraining the molecular fingerprints. By 

leveraging the invertible nature of our fingerprint representation, we can design molecular structures 

starting from a desired alignment type. This involves first mapping alignment-specific fingerprint 

features (identified from G0-G6), then generating valid fingerprints that satisfy these constraints, and 

finally reconstructing the corresponding molecular structures. 

These fingerprint criteria, defined in fig. S28, correspond to a finite and exhaustible chemical search 

space. Specifically, the number of viable organic spacers for each fingerprint criterion follows a 

single-peak distribution across generations: starting at zero, peaking at an intermediate generation, 

and diminishing to zero by G11 (fig. S29). This approach enables us to overcome the limitations of the 

enumerable chemical space (G0-G6, ~106 spacers, with the number expected to increase exponentially 



in later generations) and conduct an exhaustive search across the entire chemical space within the 

subregion defined by fingerprint constraints. While viable spacers may exist beyond this subregion, 

our analysis suggests that it represents the most promising region for identifying candidates efficiently 

while maintaining an affordable computational cost. Our search identified two type Ib organic spacers 

in G7-G8 (fig. S30), 12 type IIa candidates in G3-G9 (fig. S31-32), and 42 type IIb candidates in G2-G6 

(fig. S33-34). Figure 6 and fig. S35 show representative organic spacers for each energy level 

alignment type.  

Designing type Ib spacers proved the most challenging due to the need for a highly conjugated 

backbone with a small HOMO-LUMO gap. Our analysis revealed that only acene-based spacers with 

at least five linearly fused benzene rings can achieve the required small HOMO-LUMO gap (< 2.3 

eV, below the inorganic bandgap). Other conjugated backbones, such as benzene (linked) or thiophene 

(either linked or fusion) with a comparable number of rings, are not suitable (fig. S36). Acene-based 

materials, extensively studied in organic electronics(65), exhibit a progressively narrowing HOMO-

LUMO gap as the number of rings increases. Both identified type Ib spacers feature a pentacene 

backbone with two ammonium tethering groups. While higher acene derivatives (e.g., hexacene, 

heptacene) could theoretically achieve even smaller HOMO-LUMO gaps and guarantee type Ib 

alignment, they were absent from the PubChem database.  

To date, only one diammonium organic spacer featuring type Ib alignment has been theoretically 

proposed in the context of designing DJ lead-iodide perovskites(32). This spacer, which also features 

a pentacene backbone with two methylammonium tethering groups, was identified in our inverse 

design (in G4), but was excluded in the subsequent PubChem filtering step. The only experimentally 

synthesized 2D lead-iodide perovskite spacer with type Ib alignment belongs to RP phase(33). 

However, our calculations indicate that this reported spacer exhibits type IIa alignment, although the 

organic LUMO and inorganic CBM are closely positioned (fig. S37). The discrepancy is likely due to 

the fundamental differences between experimentally measured excitonic optical properties and 

ground-state band structure obtained from DFT calculation(38). While direct comparison between 

experiment and theoretical results of energy level alignment in 2D perovskites remains 

challenging(49), the variation trends within our calculations—performed with a consistent set of 

parameters—are reliable and can provide insights on designing spacers with targeted energy level 

alignment. 

In comparison, realising type IIa alignment is more amiable, which typically requires extending 

conjugation by increasing number of aromatic rings to achieve a sufficiently high HOMO level. Our 

inverse design identified two major families of organic spacers: acene-based molecules with fewer 

rings than pentacene and oligothiophene-based molecules. Both exhibit a progressively narrower 

HOMO-LUMO gap with increasing ring count. In the context of organic spacers, these molecules rely 

on the same principle—extending conjugation to raise HOMO and lower LUMO levels. Additionally, 

our analysis shows that increasing the linker length in the tethering ammonium group can raise both 

HOMO and LUMO levels. Within the oligothiophene family, numerous viable spacers were identified, 

featuring linked thiophene with variable ring count and linker length, including three cations 

previously reported in the literature(31, 49). In the acene-based family, anthracene with ethyl-

ammonium as the tethering group was identified, which has been reported in a theoretical work(32). 

Finally, we found that type IIb spacers typically require a single primary ammonium group and 

pyridine-type nitrogen substitution on multiple positions on aromatic rings to lower the LUMO level. 

These organic spacers often feature nitrogen-substituted ring systems as the conjugated backbone, 

which are well-established in medicinal chemistry and related fields. For example, we identify several 

organic spacers featuring the six-membered aromatic diazines, including pyrazine, pyridazine, and 

pyrimidine. Two of these spacers have been previously predicted in a recent theoretical work(39); 

however, no experimental studies have been conducted on DJ perovskites featuring this alignment 



type. Compared to the only IIb type spacer reported for the RP phase(33), our identified spacers exhibit 

significantly simpler structures.  

 

Discussion  

In this work, we demonstrate that the inverse design of DJ perovskites can be effectively achieved 

through an AI-assisted workflow, enabled by a simple yet powerful invertible fingerprint 

representation of organic spacers. In contrast to many prior approaches that rely on complex deep 

learning architectures and large-scale datasets—often impractical for data-scarce, niche systems such 

as 2D perovskites—our method introduces a tailored molecular fingerprint scheme that distils 

essential structural features into a compact and interpretable form. This representation integrates 

seamlessly into the established materials discovery pipelines, including high-throughput calculations, 

machine learning, and synthesis feasibility filtering, enabling efficient navigation of vast chemical 

spaces from limited starting data. 

The utility of this workflow is exemplified through the targeted discovery of diammonium organic 

spacers yielding energy level alignments of type Ib, IIa, and IIb—domains that remain underexplored 

in the energy landscape of 2D perovskites. Starting from an initial dataset of only 21 known structures, 

the workflow navigates a projected chemical space of ~106 compounds and identifies 56 promising 

candidates (fig. S38). The implications of identifying these molecules go beyond designing 2D DJ 

perovskites since thousands of organic cations, if not many more, have been exploited in the literature 

in the context of improving the performance of perovskite optoelectronic devices in the context of 

either rendering the defect-passivating effect of forming tailored 2D/3D heterostructures. 

Beyond the specific application demonstrated here, this workflow offers several avenues for extension. 

First, the framework is adaptable to optimize for additional material properties, such as chirality or 

charge transport, by modifying the target property and screening criteria. Second, the molecular 

fingerprint is highly customizable and can be tailored to emphasize different structural motifs or 

extended to other hybrid material systems, particularly those involving small organic molecules. Third, 

the pipeline is flexible and upgradable. For example, high-throughput DFT calculations can be 

substituted with high-throughput experiments or other simulation techniques, and the machine 

learning component can be expanded to more complex architectures such as deep learning models to 

capture more intricate structure–property relationships. 

Despite the merits mentioned above, our current implementation and the results also reveal limitations 

that reflect broader challenges in AI-driven materials discovery. For instance, chemical functional 

motifs commonly used in organic photovoltaics and organic LEDs(33, 34) can be difficult to encode 

faithfully into a fixed-length fingerprint, which warrants the development of more sophisticated 

scheme of representing complex molecules with 3D configurations and dynamic features. Moreover, 

expert intuition, accumulated through decades of empirical research, remains difficult to formalize 

within current machine learning architectures. The approach to judge synthetic accessibility, chemical 

stability, or conformational preference of organic cations in hybrid frameworks is still largely heuristic. 

Bridging this gap between machine-driven exploration and domain expertise remains a research 

frontier and is critical to elucidating the composition-structure-property correlations. Although 

experimental validation of the predicted DJ perovskites through detailed synthesis and energy level 

characterization is beyond the scope of the current study, such efforts are urgently warranted since 

our study has revealed these material candidates and elucidated how different features affect the 

energy levels, and the future experimental results are expected to provide valuable feedback to further 

improve the theoretical workflow. Considering the vast chemical space of organic cations and the 

critical roles of such molecules in the functionalities of perovskite devices, this study calls for 

collective efforts from the perovskite community to pursue new hybrid materials. We believe our 

present study, by integrating domain knowledge into the design of a physically informed and 



interpretable fingerprint, represents a small but meaningful step toward more robust and practical AI-

assisted materials design. 

 

 

Materials and Methods 

Molecular fingerprinting and morphing. Organic spacer structures were represented using 

Simplified Molecular Input Line Entry System (SMILES)(66). Molecular fingerprints were generated 

via Smiles Arbitrary Target Specification (SMARTS) pattern implemented in RDKit to identify and 

quantify specific functional groups. Molecular morphing involved iterative chemical transformations 

encoded as SMARTS patterns to systematically modify molecular structures. 

Density functional theory (DFT) calculations. First-principles calculations for 2D perovskite 

structures were performed using the projector-augmented wave (PAW) method implemented in the 

Vienna Ab initio Simulation Package (VASP)(67) v5.4.4. Crystal structures were optimized using the 

generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional(51). 

A uniform k-mesh grid with a reciprocal density of 300 was used. The plane-wave basis set cutoffs 

for the wavefunctions were set at 480 eV. Starting from initial structures comprising 221 PbI4 units 

with organic spacers arranged in the herringbone pattern, the atomic positions were fully relaxed until 

the energy difference is below 510-6 eV on each atom.  

Electronic structures of 2D perovskites were computed with the Heyd-Scuseria-Ernzerhof hybrid 

functional (HSE06)(53) with 40% Hartree-Fock exchange, incorporating spin-orbit coupling (SOC) 

to capture the relativistic effects in heavy atoms (i.e., Pb). The electronic structure is performed at a 

reciprocal density of 64. High-throughput automation of these calculations was managed using 

pymatgen library following a workflow based on the Materials Project input parameters. 

The frontier molecular orbitals (HOMO and LUMO) of isolated organic spacers were calculated using 

the B3LYP functional and 6-31G* basis set in Gaussian 16 software.  

Machine learning. All machine learning analysis were performed using scikit-learn library(68). The 

preprocessing is performed using the standardscaler algorithm. Nine machine learning models, as 

shown in Fig. 4B, was trained and evaluated using root mean squared error (RMSE). Train and test 

are split into 80:20 ratio.  The machine learning models have their hyperparameters optimized using 

GridSearch CV function based on their RMSE with fivefold cross-validation. The SHapley Additive 

exPlanations (SHAP) value analyses were performed using SHAP library. 

Synthesis feasibility. Synthetic accessibility of organic spacers was assessed by querying the 

availability of their neutral form in the PubChem database. The queries are carried out via the 

pubchempy package, which interface directly with the PubChem API. Formability score was 

calculated based on five topological molecular descriptors derived from molecular distance matrices 

calculated using RDKit. 
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Figures and Tables 

 

Fig. 1. AI-assisted inverse design workflow for discovering DJ-phase 2D perovskites with 

targeted energetics and feasibility. This workflow hinges on a unique 12-digit fingerprint 

representation scheme to navigate the chemical space of organic spacers, integrating DFT calculations, 

interpretable machine learning, and synthesis feasibility screening. First, hypothetical candidates are 

generated using a molecular morphing approach and selected for DFT calculation. Second, the DFT 

data are used to train interpretable machine learning models, accelerating property predictions and 

revealing structure-property relationships. Third, synthesis feasibility is assessed based on the 

synthetic accessibility of organic spacers and their potential to form stable 2D structures. Finally, the 

acquired 2D perovskite candidates undergo DFT validation to confirm their energy level alignment, 

leading to a selection of recommended candidates.  

 

Fig. 2. Invertible molecular fingerprint representation for organic spacers in DJ perovskites. 

Organic spacers are first fragmented into their building blocks (backbone, tethering ammonium, side 

chain, and substitutions), with each building block encoded as a short fingerprint, collectively forming 

a complete 12-digit fingerprint.  



 

 

Fig. 3. High-throughput data generation and energy level alignment. (A) Scaffold tree plot of the 

molecule-generation process. Starting with the G0 molecule (‘PDMA’) at the center, cation spacers 



with increasing complexity are created by applying 13 iterative morphing operators. All organic 

spacers in G1 are displayed (first circle), while for G2, only representative spacers with unique 

molecular fingerprints are shown (second and third circles). Existing organic spacers are highlighted 

with blown color. The chemical space expands exponentially from an initial set of 21 reported organic 

spacers to millions of hypothetical spacers within generations G0-G6. The number of spacers in each 

generation is as follows (number in parenthesis indicate PubChem-available molecules): G0: 1 (1), G1: 

15 (13), G2: 236 (94), G3: 2,987 (411), G4: 35,495 (1,367), G5: 401,932 (2,674), G6: 4,446,434 (4,465). 

(B) t-SNE representation of the generated chemical space containing the hypothetical spacers. The 

two latent dimensions are calculated using fingerprints through nonlinear dimension reduction. Two 

existing spacers with the lowest and highest generations are labelled: ‘PDMA’ (G0) and ‘AE4T’ (G6). 

(C) Energy level alignment between the organic and inorganic components in DJ perovskites, 

incorporating 21 existing spacers and 240 hypothetical spacers in the expanded chemical space. Filled 

dots mark the valence band maximum (VBM) of inorganic layers and the highest occupied molecular 

orbital (HOMO) of organic spacers, while unfilled dots mark the conduction band minimum (CBM) 

and the lowest unoccupied molecular orbital (LUMO). 

 

 

Fig. 4. Machine learning model performance and feature impact analysis for predicting the 

frontier energy levels of organic cations. (A) Correlation matrix of fingerprint features based on the 

analysis of the Pearson’s coefficients. (B) Performance comparison of various machine learning 

models for HOMO and LUMO prediction based on R2 score, with training results of Lasso regression 

and support vector regression models shown as examples. (C and D) SHAP value analysis for the 

Lasso regression model, illustrating the contribution of individual features to the prediction of (C) 



HOMO and (D) LUMO energy levels. The SHAP values are normalized with respect to the G0 

molecule. 

 

 

Fig. 5. Two-step screening process targeting the synthesis feasibility of DJ perovskites. (A) Five 

topological molecular descriptors combined to derive the formability score (left). Formability score 

on reported organic spacers and hypothetical spacers (right). The cutoff for the formability score is 

assigned to 0.88. (B) t-SNE 2D projection of the formability score in the generated chemical space. 

Two reported non-2D organic spacers with the lowest formability score, also labelled in (A), are 

highlighted. (C) Sankey diagram showing the proportion of hypothetical spacers passing each 

screening stage, giving rise to “feasible” cations with different energy level alignment types. (D) 

Values of organic fingerprint features associated with different energy level alignment types. Bars 

indicate the 95% confidence intervals for each descriptor. As no Type Ib candidates were found within 

the G0-G6, candidates excluded by the synthesis feasibility filter are also shown for comparison. 

 

 



 

Fig. 6. Inverse designed DJ perovskites for type Ib, IIa, and IIb energy level alignment. (A) Scatter 

plot depicting the predicted DJ perovskites with targeted alignment types, alongside previously 

reported ones. (B) Molecular structures of representative organic spacers for three targeted alignment 

types. (C to E) Electronic band structures for representative DJ perovskites featuring target alignment 

types, calculated at the HSE+SOC level. The projected contributions from the organic and inorganic 

components are shown in orange and blue, respectively. Charge density distributions of the band edge 

states illustrate the spatial localization of frontier energy states within the organic or inorganic 

substructures. 

 


