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Abstract

Artificial intelligence (Al)-assisted workflows have transformed materials discovery, enabling rapid
exploration of chemical spaces of functional materials. Endowed with extraordinary optoelectronic
properties, two-dimensional (2D) hybrid perovskites represent an exciting frontier, but current efforts
to design 2D perovskites rely heavily on trial-and-error and expert intuition approaches, leaving most
of the chemical space unexplored and compromising the design of hybrid materials with desired
properties. Here, we introduce an inverse design workflow for Dion-Jacobson perovskites that is built
on an invertible fingerprint representation for millions of conjugated diammonium organic spacers.
By incorporating high-throughput density functional theory (DFT) calculations, interpretable machine
learning, and synthesis feasibility screening, we identified new organic spacer candidates with
deterministic energy level alignment between the organic and the inorganic motifs in the 2D hybrid
perovskites. These results highlight the power of integrating invertible, physically meaningful
molecular representations into Al-assisted design, streamlining the property-targeted design of hybrid
materials.

Teaser
Al-driven design pinpoints new 2D perovskites with tailored electronic properties for next-gen
materials.




Introduction

Recent advances in artificial intelligence (AI) have brought a paradigm shift in materials discovery,
allowing researchers to explore vast chemical and structural spaces far more efficiently than traditional
experimental and theoretical methods(/-3). By learning complex patterns from existing data, machine
learning (ML) models can rapidly predict material properties(4), optimize design parameters(J), and
identify promising candidates for diverse applications(6, 7). Inverse design has emerged as a
transformative approach to reverse the conventional design process, allowing the discovery of new
materials with targeted properties(8, 9). Various methods, including generative models(/0, 11),
optimization algorithms(/2), and invertible materials representation(/3), have been developed to
enable the inverse design pipelines. These innovations have accelerated materials discovery across a
myriad of material domains, ranging from solid-state inorganic crystals(/3), high-entropy alloys(6),
to organic semiconductors(/2) and metal-organic frameworks (10).

Two-dimensional (2D) hybrid perovskite presents an exciting frontier for the inverse design of
materials due to their much larger design space associated with organic cation spacers, relative to the
3D perovskite counterparts(/4-16). These materials have demonstrated exceptional properties and
played pivotal roles in many optoelectronic devices such as photovoltaics and LEDs(/7-20). In the
2D hybrid perovskite family, the Dion-Jacobson (DJ) phase is particularly interesting, featuring
diammonium organic spacers and the absence of van der Waals gaps. Expanding the chemical space
of 2D perovskites holds great potential to further advance their optoelectronic device performance by
tuning band structure(2/, 22), enhancing charge transport(23-25), and stability(26, 27). While design
principles for adjusting the composition and thickness of inorganic layers have been well-
established(28, 29), the exploration of organic spacers relies heavily on trial-and-error
experimentation and expert intuitions(/4, 30). In particular, current approaches typically focus on
modifying functional groups in known spacers(3/, 32) or drawing insights and borrowing molecular
fragments from organic photovoltaics(33, 34). While these methods have been effective and produced
some breakthroughs, a general methodology catering to the characteristics of hybrid perovskites is
still lacking, which limits the exploitation of the vast chemical space and the elucidation of the
structure-property relationship.

Al-assisted workflows are beginning to address these challenges outlined above. An early study has
used ML models trained on 86 reported organic spacers in lead-based 2D perovskites to derive design
rules for predicting the perovskite dimensionality of five new organic spacers(35). Recent approaches
have expanded the scope of spacer exploration considerably. For instance, Wu et al. utilized a ML
model trained on 80 high-throughput synthesized lead-free double perovskites to evaluate the
synthesis feasibility of 8,460 organic spacers from PubChem(36). In another study, molecular
dynamics simulations on over ten-thousand hypothetical organic spacers were used as training data to
select six new ligands for perovskite synthesis(37). However, the forward design approach of the prior
studies typically requires exhaustive searches of chemical space to identify optimal candidates, and
the unidirectional structure-representation-property pipeline restricts the efficiency and scalability to
discover materials with targeted properties. Therefore, the potential of inverse design remains far from
being fully leveraged in the discovery of hybrid materials. Furthermore, while the prior studies have
primarily focused on formability and stability, a critical gap remains in the application of Al-assisted
workflow to predict physical properties of 2D perovskites. In particular, energy level alignment, a key
property controlling the spatial distribution and transfer of charge carriers and excitations in
semiconducting materials and their interfaces, directly impacts the performance of optoelectronic
devices. Different from well-studied elemental and compound semiconductors, organic and inorganic
components in hybrid perovskites are heterogeneous with separate energetics, forming quantum-well-
like structures(37). Although 2D perovskites have been investigated using traditional workflows, such
as the Edisonian approach(3/, 33) and high-throughput calculations(38, 39), systematic exploration



of the energy level alignment through Al-assisted approaches is still in its early stages(40), presenting
a significant opportunity for advancement.

In this study, we introduce a machine learning-assisted inverse design workflow to navigate the
chemical space of diammonium organic cations as building blocks of DJ perovskites. At the core of
our workflow is an invertible representation of 12-digit fingerprint vectors for conjugated organic
spacers that bridges the structure of organic spacers and the target property of energy level alignment.
We expanded the pool of organic spacers from the 21 reported spacers to millions of hypothetical
candidates with diverse fingerprints using a morphing operation approach. The electronic structures
of a subset of these candidates are determined using high-throughput density functional theory (DFT)
calculations, which then guides the navigation of the chemical space using ML. Furthermore, the
synthesis feasibility of these hypothetical DJ perovskites is evaluated based on the synthetic
accessibility of organic molecules and the formability of 2D structures. Finally, our inverse-design
workflow ends with DFT validations, offering new organic spacers to construct DJ perovskites with
energetic alignment types of Iy, Ila, and .

Results
Workflow based on invertible molecular fingerprints

The Al-assisted inverse design workflow is illustrated in Fig. 1. This workflow was designed based
on the unique nature of 2D hybrid perovskites and the targeted property of band alignment. It begins
with chemical space expansion using a molecular morphing approach. To realize an invertible
representation of conjugated diammonium organic spacers, they are encoded into a compact 12-digit
fingerprint vector. Based on the physical insights obtained on 21 existing spacers reported for DJ
perovskites, we generated the fingerprints of approximately 4x10° hypothetical spacers with
complexity comparable to the reported ones. High-throughput density functional theory (DFT)
calculations were then used to evaluate the energy levels of the corresponding hybrid perovskites
within a designated subset (3,239) of the chemical space, which were used as the training data. Next,
various regression models were trained using fingerprints as input features and organic frontier levels
as target property, aiming to extract insights on the structure-property relationship. The hypothetical
spacers were then down selected using a two-step synthesis feasibility screening funnel based on their
availability in the PubChem database and multiple reported formability descriptors specific to forming
2D perovskite structures. Lastly, feasible candidates for targeted energy level alignment types are
validated using DFT calculation. By integrating these components, the workflow facilitates inverse
design of DJ perovskites with rarely explored Ip, Il. and Ilp band alignment types (classification of the
alignment types is discussed in fig. S1).

While the components of this workflow—database generation, high-throughput calculations, machine
learning, and DFT validation—are common to Al-assisted materials discovery(4, 41, 42), the
distinctive feature here is the integration of an invertible materials representation. Invertibility is a key
attribute for materials representations in inverse design(9), ensuring two-way conversion between
molecular structure and their representation. This type of invertible representation has been applied to
some materials systems(/0, 13), but this is the first implementation in the context of hybrid materials.
The absence of a versatile scheme of organic spacer representation has confined 2D perovskite
research to forward design approaches, limiting the exploration of available chemical space. As we
will show in this work, the workflow developed herein overcomes these limitations, facilitating the
energy level alignment prediction. In addition, we expect that this fingerprint-based workflow will be
generalized to investigate the correlation of other material properties with organic motifs in a wide
range of hybrid material systems.

As shown in Fig. 2, our fingerprinting scheme leverages the unique chemical properties and structural
characteristics of conjugated organic cations in 2D DJ perovskites, comprising two key components:



molecular fragmentation and functional group encoding. Considering the structural motifs shared by
reported conjugated diammonium spacers (fig. S2), the DJ-phase organic spacers explored in this
work are assumed to consist of four fragments: (1) a conjugated backbone of aromatic rings; (2) two
tethering ammonium groups that anchor the spacer to the inorganic framework; (3) optional
heteroatom substitutions; and (4) optional side chains. These structural constraints significantly
narrow the chemical space from a potentially immense size (estimated at ~10%° molecules for small
organic molecules, as recognized in the context of drug discovery(43)) to a much smaller subspace of
organic spacers. We should note that the resulting chemical space is not exhaustive, leaving out some
spacers, for example ones with alkyl backbones or non-continuous conjugation (fig. S3), but this
fingerprinting scheme leads to a chemically relevant and computationally manageable set of organic
cations (vide infra), giving rise to 2D DJ perovskite candidates with tailored properties. We primarily
focused on semiconducting m-conjugated molecules due to their high relevance to optoelectronic
applications of 2D perovskites and rich chemical diversity.

The encoding component of the scheme translates molecular structure into a fingerprint vector
containing 12 customized descriptors, each representing a specific structural feature. Eleven
descriptors are obtained by counting functional groups, while a unique “ammonium position”
descriptor is derived from a distance matrix (fig. S4). The main principle is to choose a minimal
number of descriptors to reduce computational cost while these descriptors must be sufficient to
describe the organic spacers relevant to DJ perovskites. As we will show later in the ML result, there
is minimal overlap between the descriptors, and they capture essential features for energy level
prediction.

We should note that the molecule-fingerprint correspondence is not exclusive, in other words, some
molecular isomers share the same fingerprint (fig. S5). Although additional descriptors, or longer
fingerprints (e.g., heteroatom substitution position, and side chain position) could offer more structural
detail, we found such features have minimal impact on electronic properties (the feature-energy
correlation will be discussed in detail in later sections), making the current fingerprinting scheme
sufficient for predicting new DJ perovskites with all four band alignment types. Furthermore, the non-
exclusivity of the fingerprint does not hinder its invertibility in the context of inverse design. The aim
i1s not to recover a single, unique molecule, but rather to generate a set of candidate structures
consistent with the particular fingerprint and endowed with the target energetics.

In previous Al-assisted 2D perovskite discovery efforts, organic spacers are typically represented
using physicochemical descriptors(36, 37), but an effective molecular representation scheme that can
explicitly capture the molecular structure has not been established. In the myriad research fields
involving organic molecules, the structural variations are often encoded using digits (e.g., fingerprints),
strings (e.g., SMILES), or graph-based methods(9). Among these, fingerprinting methods—such as
the widely adopted but non-invertible 2048-digit Morgan fingerprint—have demonstrated their
efficiency in Al-assisted workflow(44, 45). In contrast, our 12-digit fingerprint scheme has been
tailored according to the specific attributes of 2D hybrid perovskites, offering several advantages.
First, it is efficient, with minimal redundancy and overlap between descriptors, ensuring a compact
representation that captures structural variation most relevant to DJ perovskites. Second, it is
interpretable, enabling human experts to extract meaningful insights into the encoded structural
variations. Finally, it is invertible, allowing direct mapping back to the molecular structure by both
human experts and machines, which is essential for inverse design.

Chemical space establishment and high-throughput calculations

We begin the workflow by enumerating hypothetical organic spacers within the defined chemical
space. We used a molecular morphing approach to generate fingerprints of organic spacers (38, 46),
resulting in diverse yet uniform variations in the 12-digit fingerprint vector (Fig. 3A). The starting
point is the most basic, well-characterized molecule, phenylene-dimethylammonium (‘PDMA’)(47),



defined as Generation 0 (Go). PDMA was selected for its simplicity, synthetic accessibility, and
widespread use as a spacer in DJ perovskites, making it a suitable center of scaffold for constructing
the chemical space. From this seed molecule, we iteratively applied 13 morphing operators to
introduce incremental modifications, creating a progressively enlarged set of hypothetical spacers (see
Methods and fig. S6-7). This approach yields a broad spectrum of organic spacers, extending beyond
the frequently studied phenyl- and thiophene-containing families to include structures incorporating
heteroatoms (e.g., F, O, and N) and side chain modifications. Across generations Go-Gg, we
enumerated a total of 21,306 fingerprints in these generations, corresponding to 4,887,100
hypothetical organic spacers. All 21 experimentally reported organic spacers were captured within
this set, demonstrating the representativeness and coverage of our enumerated chemical space. The
neutral forms of the hypothetical spacers were cross-referenced with the PubChem database. Within
generations Go-Gs, 9,025 spacers were identified in PubChem. Due to computational constraints, we
paused our exploration at G¢. However, as demonstrated later, the inverse design phase guided by
targeted energy level alignment type overcomes these limitations, enabling exhaustive exploration of
the chemical space within defined fingerprint criteria.

The chemical space of spacers across generations Go-Gg is visualized in Fig. 3B. The two-dimensional
coordinates were obtained using t-distributed stochastic neighbour embedding (t-SNE)(48), a
nonlinear dimensionality reduction method that transforms the 12-dimensional fingerprints into a two-
dimensional representation. Clusters in the visualization represent spacers with similar fingerprint
features, while larger distances between clusters indicate greater dissimilarity (fig. S8-9). The
progressive structural complexity of organic spacers across generations is captured in this
visualization. Notably, among all reported spacers, the highest-generation (Gs) one, ‘AE4T’(49), is
distinctly separated from other spacers, reflecting its more complex structure. The generated spacers
exhibit comprehensive coverage of the chemical space. This generative approach to forming a high-
throughput materials database, in comparison to approaches that collect spacers from existing
databases, yields a more balanced representation. As we will demonstrate in later sections, training
data derived from this approach enable high predictive accuracy of the machine learning model.

We further analysed the electronic structure of 261 DJ perovskites formed by both reported spacers
and those derived from generations Go-G2 of the expanded chemical space. Model crystal structures
were constructed by inserting organic spacers between the Pbls layers, with each unit cell containing
four diammonium spacers and four Pbls units (see Methods). To align with experimentally observed
structures, all organic spacers were arranged in herringbone configurations(50); other configurations
are possible, but our analysis revealed that the packing arrangement has minimal influence on the
energy level alignment type (fig. S10). The structures were optimized at the GGA/PBE level(57), and
the relaxed geometries are available in our open-source repository on the Materials Project(52)
platform. The energy level alignments between organic frontier orbitals and inorganic band edges
were calculated with the HSE hybrid functional(53), using a mixing factor of 0.4 to match
experimental bandgaps (Tables S1-2). Spin-orbit coupling (SOC) was included to account for realistic
effects associated with heavy elements such as Pb. Most DJ perovskites (18 out of 21 existing
structures) exhibit type I. energy level alignment, characterized by electrons and holes localized in
inorganic layers, while the remaining three exhibit type Il. alignment. The variation in energy level
alignment is primarily dictated by the organic frontier levels (Fig. 3C), which span a broad energy
range (~6.1 eV), whereas inorganic band edges vary much less (within ~0.9 eV). This observation
aligns with the common approximation cited in the literature that the inorganic energy levels of 2D
perovskites can be assumed almost unchanged with different organic spacers(3/, 33).

Analysis of the structure-property relationships across all studied structures reveals several general
trends in the electronic band structure of 2D perovskites (see schematics in fig. S11). With the
dominant type-l. band alignment, the inorganic layers consistently form direct bandgap
semiconductors, typically at " point in the Brillouin zone, whereas in cases where interlayer coupling



is present (see the discussion below), the bandgap shifts to the Z point. The bands exhibit strong
dispersion along the in-plane directions, while the dispersion along the stacking direction (I'-Z)
depends on the strength of interlayer coupling. Figure S12 shows two key structural factors
influencing the inorganic band edge states: (1) tilting and distortion of Pbls octahedra due to the
hydrogen bonding interaction with organic spacers and (2) orbital overlap between iodide atoms in
neighbouring layers when the interlayer distance decreases below 5 A, leading to the I'-Z energy
dispersion. This interlayer coupling has also been observed in DJ-phase and ACI-phase perovskites
with short organic spacers(54, 55).

The organic highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) show minimal energy dispersion, closely resembling their isolated molecular forms. This
behaviour is characteristic of herringbone-packed organic spacers, where electronic interactions
between adjacent organic units are weak(32). Furthermore, the primary influence of the organic
spacers on the energy level alignment of DJ perovskites lies in their HOMO and LUMO levels, which
is largely a result of the weak bonding between the organic cations and the inorganic frameworks(/4,
30).

These organic frontier levels can be efficiently approximated using values computed for the isolated
organic cations with B3LYP functional(56), a method that is both computationally efficient and
sufficiently accurate. Figure S13 shows strong linear correlations between the HOMO/LUMO levels
of hybrid perovskite structures (using HSE + SOC) and isolated cations (using B3LYP) across 252
structures in Go-G2, validating this simplification. This approach enables us to scale our calculations
from hundreds to thousands of structures for the subsequent training of machine learning models. As
shown in Fig. 3C, our calculation results obtained on the DJ perovskites targeted in this work—
including Go-Gz and 75 final candidates, totally 325 organic cations—cover a much wider range than
the reported ones.

Machine learning prediction of organic frontier levels

Machine learning was employed to elucidate the structure-property relationship between the organic
spacer structure encoded in molecular fingerprints and their frontier energy levels. Beyond offering
interpretable analysis, machine learning provides rapid and scalable predictions, allowing us to
extrapolate from thousands of DFT-calculated molecules in generations Go-G3 to millions of
hypothetical candidates generated in generations up to Ge. Our 12-digit fingerprint representation
integrates seamlessly into the machine learning pipeline as input features. Unlike previous studies that
rely on diverse chemical descriptors and require feature selection to reduce multicollinearity(36, 37),
the low correlation among our descriptors (Pearson’s correlation coefficients < 0.5; Fig. 4A) ensures
that all features contribute independently to target property prediction, enabling direct use of the
complete fingerprints.

Our machine learning dataset consists of 3,239 organic spacers in Go-Gs, with fingerprints as input
features and HOMO/LUMO values obtained from high-throughput calculations as target properties.
We trained separate machine learning models for HOMO and LUMO predictions, with the dataset
split into training and testing sets (80: 20 ratios). To evaluate predictive performance, we benchmarked
various regression models commonly used in materials science literature(57), including linear (e.g.,
linear regression, LASSO-type linear regression, etc.) and non-linear (e.g., Random Forest, Support
Vector Machines, etc.) ones, using the R? score as the performance metric (Fig. 4B and fig. S14-16).
Non-linear models achieved a slightly higher R? score for HOMO/LUMO predictions (0.99/0.97)
compared to the linear models (0.95/0.95), with the performance gap primarily arising in the lower-
energy range of HOMO/LUMO values. Nevertheless, both model types captured the overall trend
effectively. Since our primary objective was to classify energy level alignment types rather than
predict absolute values, and given the similar predictive capability across models, we selected linear
models due to their enhanced interpretability. The performance and parameters among the linear



models are nearly identical (fig. S17), therefore LASSO regression was chosen for subsequent
analyses.

The LASSO regression model’s simplicity allows direct interpretation of feature importance through
its unnormalized coefficients. The fitted equations are:

HOMO = 1.34x, + 0.61x, + 0.03x5 + 1.32x, + 0.53x5 + 0.10x5 — 0.30x, + 0.00xg + 0.04x,

LUMO = 0.53x, + 0.84x, + 0.11x5 + 1.86x, + 0.51x5 — 0.04x, — 0.38x, — 0.11xg + 0.02x,
+ 0.37x0 + 0.13%5; + 0.14x,, — 13.61

The coefficients extracted from the model represent the raw impact of each descriptor on the target
property, i.e., the predicted HOMO/LUMO energy levels. In the HOMO equation, features x1 and x4
(i.e., numbers of rings and primary ammonium groups, respectively) have the largest contributions.
While in the LUMO equation, x4 again has the strongest influence, indicating that engineering the
ammonium groups is probably the most effective way to simultaneously tune the HOMO and LUMO
levels. The normalized coefficients, provided in fig. S17, offer a scale-independent perspective on
feature importance, showing only slight differences from the unnormalized results.

SHAP value analysis (Fig. 4C, D) further confirms the key influence of descriptors related to the
conjugated backbone and tethering ammonium groups. Among these, the number of aromatic rings in
the conjugated backbone is known to directly influence the degree of conjugation—a well-established
design rule in organic semiconductors,(58) which was also recognized to have important implications
for 2D perovskites(31, 33). In addition to conjugation, the analysis underscores the significance of
electron richness, another foundational principle in the design of organic semiconductors(58). For
tethering ammonium groups, the electron-rich alkyl groups associated with primary ammonium can
raise the frontier levels by increasing the linker length or the number of primary ammonium groups.
Last but not least, the effect of heteroatom substitution is mixed, depending on the electronic nature
of the substituent. For example, pyridine-type nitrogen, being electron-withdrawing, lowers both
HOMO and LUMO, while pyrrole-type nitrogen, being electron-donating, raises both levels.
Interestingly, fluorination—widely used to enhance stability in 2D perovskite spacers due to the large
dipole moment induced by its electron-withdrawing ability(59, 60)—shows a relatively minor
influence on the frontier levels. This limited effect may stem from the fact that fluorine substitution
does not directly participate in the conjugated m-system. While highly electronegative, fluorine’s
influence remains localized, resulting in minimal perturbation to the frontier orbitals. Representative
SHAP analysis of organic spacers achieving type Il. and Il (i.e., with relatively high HOMO/low
LUMO values) are exemplified in fig. S18-19.

Overall, our result indicates that the interpretable machine learning model provides an accurate
prediction of organic frontier levels, and by extension, the energy level alignment of DJ perovskite
for any organic spacer given its fingerprint. This capability facilitates the rapid identification of
promising candidates with desired energy level alignment types, accelerating the discovery of DJ
perovskites.

Synthesis feasibility screening

Synthesis feasibility is critical in the Al-assisted materials discovery workflow, as it informs the
likelihood of experimental realization. For organic-inorganic hybrid materials, accurate prediction of
synthesis feasibility is particularly challenging due to the complexity inherent in solution-based
formation processes, limiting the effectiveness of purely first-principles approaches(2, 67). Although
formation energies can be computed for 2D perovskites and give clues to the thermodynamic stability
relative to their precursors(32, 62), these calculations rarely consider potential non-2D phases due to
the combinatorial complexity involved. While a few in-depth studies have explored synthesis
feasibility and structural stability for RP perovskites by explicitly considering both 2D and competing



non-2D phases(36, 37), there has been no report on DJ perovskites, and there is a general scarcity of
feasibility data in the domain of hybrid materials. To address this gap, we developed a straightforward
two-step screening framework tailored to the unique structural and bonding characteristics of DJ
perovskites.

The first step assesses the synthetic accessibility of organic spacers, using PubChem as a proxy for
practical synthesizability(36). The absence of a certain organic molecule in PubChem often implies
the challenge and cost associated with its synthesis. Among the enumerated chemical space, 9,025
organic spacers were identified in PubChem, with a decreasing fraction observed from Gy to Ge (fig.
S20). This trend is expected since the increasing molecular complexity of higher-generation spacers
often implies higher synthesis difficulties. Further analysis revealed that this reduced synthetic
accessibility correlates strongly with specific structural features, in particular, increased ring numbers,
fluorination, and the number of side chains (fig. S21). We should stress here that while PubChem
provides a practical and high-throughput filter, certain organic spacers not listed in its database may
still be accessible through deliberately designed synthetic routes, as demonstrated in organic
photovoltaic research(58).

The second step of feasibility evaluation focuses on analysing the bonding characteristics of the
organic spacers with the inorganic framework in the 2D DJ perovskite structure (fig. S22). As shown
in Fig. 5A, we introduced a new formability score based on five topological molecular descriptors
derived from the spacer’s distance matrix (fig. S23 and Supplementary Text). This approach quickly
estimates the spacers' two-dimensional topology, specifically around hydrogen-donor nitrogen atoms,
which is suitable for small molecules, while the description of larger molecules may entail the
knowledge of exact 3D conformation. Four key descriptors—steric hindrance, eccentricity, nitrogen-
nitrogen pair distance, and the number of rotatable bonds in the spacer’s tail—were previously
validated for effectively distinguishing 2D from non-2D perovskites(35, 36). In the context of DJ
hybrid perovskites, we identified an additional descriptor from our fingerprinting scheme: relative
ammonium positions on the backbone.

We identified a cutoff value of 0.88, which represents the intersection point of probability density
curves for the sets of reported 2D and non-2D organic spacers. Using this threshold, the formability
score correctly classified 27 out of 29 cases (fig. S24). Importantly, this method circumvents the
common conundrum of data scarcity and consequent overfitting associated with machine learning-
based methods (fig. S25). Although this formability screening approach is targeted specifically for DJ
perovskites, similar ones may be developed for other hybrid materials as along as the appropriate
descriptors can be identified.

Application of the formability score to our enumerated chemical space (Fig. 5B) suggests that 96.1%
of the hypothetical spacers are likely to form DJ phases. Most non-2D cases are associated with small
one-ring organic spacers. For example, two reported non-2D spacers with the lowest formability
scores are highlighted in Fig. 5B. Key structural features affecting formability include linker length
and the number of primary ammonium groups (fig. S26), aligning with some insights obtained from
previous experimental works(74).

We should note that some synthesis parameters—such as solvent choice, precursor ratios, temperature,
and PH value—are not captured by our formability scoring scheme, but they can affect whether the
DJ phase forms or other phases (e.g., 1D, 0D or RP phase) are favoured with the same organic
spacer(35). Some organic spacers have been reported to yield both 2D and non-2D structures
depending on experimental conditions(27, 63). In addition, the solubility of the organic spacers is not
considered in our synthesis feasibility filtering. In general, increasing the number of rings to three or
more in conjugated spacers can lead to solubility issues(/6). Although this challenge may be mitigated
by structural modifications—such as incorporating short alkyl side chains to disrupt the planarity of
the conjugated backbone, a strategy commonly employed in organic photovoltaics(58, 64)—these



modifications often result in molecules that are less synthetically accessible and missing in PubChem.
The complications delineated above warrant further endeavours to devise more sophisticated schemes
to assess the synthesis feasibility and compare with the experimental results carried out in strictly
controlled conditions.

DFT validation

To further validate the candidates that passed the synthesis feasibility screening in generations Go—Ge,
we performed DFT calculations on selected DJ perovskite structures. Due to the high computational
cost, we focused specifically on those predicted to exhibit targeted energy level alignments (types Iv,
II,, and IIy). These calculations were carried out using the HSE+SOC approach, following the same
protocol described in the high-throughput calculation section, to accurately evaluate the alignment
between the organic spacers and the inorganic framework.

Figure 5C provides an overview of the full screening pipeline applied to Go—Gs, including molecular
enumeration, machine learning prediction, synthesis feasibility screening, and DFT validation. In total,
we identified 8 type Il. and 44 type Il candidates that passed synthesis feasibility filters and were
validated by DFT. Notably, no type Iy candidates were found within generation Go—Ge. The primary
bottleneck for type Ip spacers was the synthesis feasibility filter, particularly the requirement for
synthetic accessibility—none of the organic spacers with type Iy alignment were found in PubChem.
The molecular structures of these excluded type I, candidates are provided in fig. S27.

Beyond validation, the DFT-confirmed structures enable us to extract characteristic fingerprint
patterns of organic spacers associated with each alignment type. Analysis of the distribution of
fingerprint descriptors (Fig. 5D) revealed distinct patterns: type Il. candidates typically feature a
higher number of rings and two primary ammonium groups, whereas type IIb candidates tend to
exhibit one ring, one primary ammonium. Since no viable type I, candidates emerged from
generations Go—Ge due to synthetic accessibility constraints, we included type Iy candidates not found
in PubChem in Fig. 5D to extract preliminary design insights. These candidates featured five or more
aromatic rings, suggesting that extended conjugation is a necessary structural characteristic for
achieving type Iy alignment.

These structure—property relationships provide interpretable design rules for targeting specific energy
level alignment types. In the following section, we leverage these insights to guide inverse design,
focusing on the higher-generation candidates, particularly those with type I, alignment that were
underrepresented in the initial chemical space of generations Go—Ge.

Inverse design of final candidates

The above-delineated materials discovery pipeline focused on generations Go—Gs, Where organic
spacers were exhaustively enumerated. However, this approach becomes intractable in later
generations due to the exponential growth of the chemical space. While we successfully identified
candidates for type Il. and Il energy level alignments, no type I, candidates were found within the
range of generations Go—Gs. To overcome this limitation, we implemented an inverse design strategy
that directly targets specific regions of chemical space by constraining the molecular fingerprints. By
leveraging the invertible nature of our fingerprint representation, we can design molecular structures
starting from a desired alignment type. This involves first mapping alignment-specific fingerprint
features (identified from Go-Gg), then generating valid fingerprints that satisfy these constraints, and
finally reconstructing the corresponding molecular structures.

These fingerprint criteria, defined in fig. S28, correspond to a finite and exhaustible chemical search
space. Specifically, the number of viable organic spacers for each fingerprint criterion follows a
single-peak distribution across generations: starting at zero, peaking at an intermediate generation,
and diminishing to zero by Gi1 (fig. S29). This approach enables us to overcome the limitations of the
enumerable chemical space (Go-Gs, ~10° spacers, with the number expected to increase exponentially



in later generations) and conduct an exhaustive search across the entire chemical space within the
subregion defined by fingerprint constraints. While viable spacers may exist beyond this subregion,
our analysis suggests that it represents the most promising region for identifying candidates efficiently
while maintaining an affordable computational cost. Our search identified two type Iy organic spacers
in G7-Gg (fig. S30), 12 type Il. candidates in G3-Go (fig. S31-32), and 42 type Il candidates in G2-Gg
(fig. S33-34). Figure 6 and fig. S35 show representative organic spacers for each energy level
alignment type.

Designing type I spacers proved the most challenging due to the need for a highly conjugated
backbone with a small HOMO-LUMO gap. Our analysis revealed that only acene-based spacers with
at least five linearly fused benzene rings can achieve the required small HOMO-LUMO gap (< 2.3
eV, below the inorganic bandgap). Other conjugated backbones, such as benzene (linked) or thiophene
(either linked or fusion) with a comparable number of rings, are not suitable (fig. S36). Acene-based
materials, extensively studied in organic electronics(65), exhibit a progressively narrowing HOMO-
LUMO gap as the number of rings increases. Both identified type Ip spacers feature a pentacene
backbone with two ammonium tethering groups. While higher acene derivatives (e.g., hexacene,
heptacene) could theoretically achieve even smaller HOMO-LUMO gaps and guarantee type Ip
alignment, they were absent from the PubChem database.

To date, only one diammonium organic spacer featuring type Ip alignment has been theoretically
proposed in the context of designing DJ lead-iodide perovskites(32). This spacer, which also features
a pentacene backbone with two methylammonium tethering groups, was identified in our inverse
design (in Gg), but was excluded in the subsequent PubChem filtering step. The only experimentally
synthesized 2D lead-iodide perovskite spacer with type Ip alignment belongs to RP phase(33).
However, our calculations indicate that this reported spacer exhibits type Il alignment, although the
organic LUMO and inorganic CBM are closely positioned (fig. S37). The discrepancy is likely due to
the fundamental differences between experimentally measured excitonic optical properties and
ground-state band structure obtained from DFT calculation(38). While direct comparison between
experiment and theoretical results of energy level alignment in 2D perovskites remains
challenging(49), the variation trends within our calculations—performed with a consistent set of
parameters—are reliable and can provide insights on designing spacers with targeted energy level
alignment.

In comparison, realising type Il. alignment is more amiable, which typically requires extending
conjugation by increasing number of aromatic rings to achieve a sufficiently high HOMO level. Our
inverse design identified two major families of organic spacers: acene-based molecules with fewer
rings than pentacene and oligothiophene-based molecules. Both exhibit a progressively narrower
HOMO-LUMO gap with increasing ring count. In the context of organic spacers, these molecules rely
on the same principle—extending conjugation to raise HOMO and lower LUMO levels. Additionally,
our analysis shows that increasing the linker length in the tethering ammonium group can raise both
HOMO and LUMO levels. Within the oligothiophene family, numerous viable spacers were identified,
featuring linked thiophene with variable ring count and linker length, including three cations
previously reported in the literature(37, 49). In the acene-based family, anthracene with ethyl-
ammonium as the tethering group was identified, which has been reported in a theoretical work(32).

Finally, we found that type I, spacers typically require a single primary ammonium group and
pyridine-type nitrogen substitution on multiple positions on aromatic rings to lower the LUMO level.
These organic spacers often feature nitrogen-substituted ring systems as the conjugated backbone,
which are well-established in medicinal chemistry and related fields. For example, we identify several
organic spacers featuring the six-membered aromatic diazines, including pyrazine, pyridazine, and
pyrimidine. Two of these spacers have been previously predicted in a recent theoretical work(39);
however, no experimental studies have been conducted on DJ perovskites featuring this alignment



type. Compared to the only Iy type spacer reported for the RP phase(33), our identified spacers exhibit
significantly simpler structures.

Discussion

In this work, we demonstrate that the inverse design of DJ perovskites can be effectively achieved
through an Al-assisted workflow, enabled by a simple yet powerful invertible fingerprint
representation of organic spacers. In contrast to many prior approaches that rely on complex deep
learning architectures and large-scale datasets—often impractical for data-scarce, niche systems such
as 2D perovskites—our method introduces a tailored molecular fingerprint scheme that distils
essential structural features into a compact and interpretable form. This representation integrates
seamlessly into the established materials discovery pipelines, including high-throughput calculations,
machine learning, and synthesis feasibility filtering, enabling efficient navigation of vast chemical
spaces from limited starting data.

The utility of this workflow is exemplified through the targeted discovery of diammonium organic
spacers yielding energy level alignments of type Ip, Il., and IIp—domains that remain underexplored
in the energy landscape of 2D perovskites. Starting from an initial dataset of only 21 known structures,
the workflow navigates a projected chemical space of ~10% compounds and identifies 56 promising
candidates (fig. S38). The implications of identifying these molecules go beyond designing 2D DJ
perovskites since thousands of organic cations, if not many more, have been exploited in the literature
in the context of improving the performance of perovskite optoelectronic devices in the context of
either rendering the defect-passivating effect of forming tailored 2D/3D heterostructures.

Beyond the specific application demonstrated here, this workflow offers several avenues for extension.
First, the framework is adaptable to optimize for additional material properties, such as chirality or
charge transport, by modifying the target property and screening criteria. Second, the molecular
fingerprint is highly customizable and can be tailored to emphasize different structural motifs or
extended to other hybrid material systems, particularly those involving small organic molecules. Third,
the pipeline is flexible and upgradable. For example, high-throughput DFT calculations can be
substituted with high-throughput experiments or other simulation techniques, and the machine
learning component can be expanded to more complex architectures such as deep learning models to
capture more intricate structure—property relationships.

Despite the merits mentioned above, our current implementation and the results also reveal limitations
that reflect broader challenges in Al-driven materials discovery. For instance, chemical functional
motifs commonly used in organic photovoltaics and organic LEDs(33, 34) can be difficult to encode
faithfully into a fixed-length fingerprint, which warrants the development of more sophisticated
scheme of representing complex molecules with 3D configurations and dynamic features. Moreover,
expert intuition, accumulated through decades of empirical research, remains difficult to formalize
within current machine learning architectures. The approach to judge synthetic accessibility, chemical
stability, or conformational preference of organic cations in hybrid frameworks is still largely heuristic.
Bridging this gap between machine-driven exploration and domain expertise remains a research
frontier and is critical to elucidating the composition-structure-property correlations. Although
experimental validation of the predicted DJ perovskites through detailed synthesis and energy level
characterization is beyond the scope of the current study, such efforts are urgently warranted since
our study has revealed these material candidates and elucidated how different features affect the
energy levels, and the future experimental results are expected to provide valuable feedback to further
improve the theoretical workflow. Considering the vast chemical space of organic cations and the
critical roles of such molecules in the functionalities of perovskite devices, this study calls for
collective efforts from the perovskite community to pursue new hybrid materials. We believe our
present study, by integrating domain knowledge into the design of a physically informed and



interpretable fingerprint, represents a small but meaningful step toward more robust and practical Al-
assisted materials design.

Materials and Methods

Molecular fingerprinting and morphing. Organic spacer structures were represented using
Simplified Molecular Input Line Entry System (SMILES)(66). Molecular fingerprints were generated
via Smiles Arbitrary Target Specification (SMARTS) pattern implemented in RDKit to identify and
quantify specific functional groups. Molecular morphing involved iterative chemical transformations
encoded as SMARTS patterns to systematically modify molecular structures.

Density functional theory (DFT) calculations. First-principles calculations for 2D perovskite
structures were performed using the projector-augmented wave (PAW) method implemented in the
Vienna Ab initio Simulation Package (VASP)(67) v5.4.4. Crystal structures were optimized using the
generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional(57).
A uniform k-mesh grid with a reciprocal density of 300 was used. The plane-wave basis set cutoffs
for the wavefunctions were set at 480 eV. Starting from initial structures comprising 2x2x1 Pbls units
with organic spacers arranged in the herringbone pattern, the atomic positions were fully relaxed until
the energy difference is below 5x10° eV on each atom.

Electronic structures of 2D perovskites were computed with the Heyd-Scuseria-Ernzerhof hybrid
functional (HSE06)(53) with 40% Hartree-Fock exchange, incorporating spin-orbit coupling (SOC)
to capture the relativistic effects in heavy atoms (i.e., Pb). The electronic structure is performed at a
reciprocal density of 64. High-throughput automation of these calculations was managed using
pymatgen library following a workflow based on the Materials Project input parameters.

The frontier molecular orbitals (HOMO and LUMO) of isolated organic spacers were calculated using
the B3LYP functional and 6-31G* basis set in Gaussian 16 software.

Machine learning. All machine learning analysis were performed using scikit-learn library(68). The
preprocessing is performed using the standardscaler algorithm. Nine machine learning models, as
shown in Fig. 4B, was trained and evaluated using root mean squared error (RMSE). Train and test
are split into 80:20 ratio. The machine learning models have their hyperparameters optimized using
GridSearch CV function based on their RMSE with fivefold cross-validation. The SHapley Additive
exPlanations (SHAP) value analyses were performed using SHAP library.

Synthesis feasibility. Synthetic accessibility of organic spacers was assessed by querying the
availability of their neutral form in the PubChem database. The queries are carried out via the
pubchempy package, which interface directly with the PubChem API. Formability score was
calculated based on five topological molecular descriptors derived from molecular distance matrices
calculated using RDKit.
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Fig. 1. Al-assisted inverse design workflow for discovering DJ-phase 2D perovskites with
targeted energetics and feasibility. This workflow hinges on a unique 12-digit fingerprint

representation scheme to navigate the chemical space of organic spacers, integrating DFT calculations
interpretable machine learning, and synthesis feasibility screening. First, hypothetical candidates are
generated using a molecular morphing approach and selected for DFT calculation. Second, the DFT
data are used to train interpretable machine learning models, accelerating property predictions and
revealing structure-property relationships. Third, synthesis feasibility is assessed based on the
synthetic accessibility of organic spacers and their potential to form stable 2D structures. Finally, the
acquired 2D perovskite candidates undergo DFT validation to confirm their energy level alignment,

leading to a selection of recommended candidates.
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with increasing complexity are created by applying 13 iterative morphing operators. All organic
spacers in G are displayed (first circle), while for G2, only representative spacers with unique
molecular fingerprints are shown (second and third circles). Existing organic spacers are highlighted
with blown color. The chemical space expands exponentially from an initial set of 21 reported organic
spacers to millions of hypothetical spacers within generations Go-Gs. The number of spacers in each
generation is as follows (number in parenthesis indicate PubChem-available molecules): Go: 1 (1), Gi:
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(B) t-SNE representation of the generated chemical space containing the hypothetical spacers. The
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(C) Energy level alignment between the organic and inorganic components in DJ perovskites,
incorporating 21 existing spacers and 240 hypothetical spacers in the expanded chemical space. Filled
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orbital (HOMO) of organic spacers, while unfilled dots mark the conduction band minimum (CBM)
and the lowest unoccupied molecular orbital (LUMO).
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frontier energy levels of organic cations. (A) Correlation matrix of fingerprint features based on the
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HOMO and (D) LUMO energy levels. The SHAP values are normalized with respect to the Go
molecule.
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Fig. 6. Inverse designed DJ perovskites for type Ib, I, and II» energy level alignment. (A) Scatter
plot depicting the predicted DJ perovskites with targeted alignment types, alongside previously
reported ones. (B) Molecular structures of representative organic spacers for three targeted alignment
types. (C to E) Electronic band structures for representative DJ perovskites featuring target alignment
types, calculated at the HSE+SOC level. The projected contributions from the organic and inorganic
components are shown in orange and blue, respectively. Charge density distributions of the band edge
states illustrate the spatial localization of frontier energy states within the organic or inorganic
substructures.



